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Abstract—Ride hailing has become prevailing. Central in ride hailing platforms is taxi order dispatching which involves recommending
a suitable driver for each order. Previous works use pure combinatorial optimization solutions for taxi dispatching, which suffer in
practice due to complex dynamics of demand and supply and temporal dependency among dispatching decisions. Recent studies try
to adopt data-driven method into combinatorial optimization hoping knowledge from history data would help overcome these
challenges. Among these attempts, adoption of reinforcement learning shows great promise but current adoptions are a unidirectional
integration which restricts the potential performance gains. In this work, we propose Learning To Dispatch(LTD), a systematic solution
that allows synergic integration of reinforcement learning and combinatorial optimization for large-scale taxi order dispatching. We
demonstrate the necessity of online learning and taxi scheduling for reinforcement learning to work in synergy with combinatorial
optimization, and devise corresponding algorithms. We also devise many tricks for more efficient calculation of the bipartite matching.
Experiments show our methods can improve 36.4% and 42.0% on utility and efficiency at most, respectively. Especially, it achieves
state-of-the-art performance in terms of utility.

Index Terms—Reinforcement Learning, Bipartite Matching, Taxi Dispatching.
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1 INTRODUCTION

Ride hailing has become a prevailing transport mode
and tremendously improved the urban traffic capacity [1].
Central in ride hailing services is taxi order dispatching,
where the ride hailing platform assigns taxi ride orders (i.e.,
demand) to appropriate taxi drivers (i.e., supply). Effective
and efficient order dispatching at large scale is essential to
both the overall utility (e.g., total revenue) and the quality
of service (e.g., travel cost and waiting time) in urban ride
hailing [2], [3], [4], [5].

Mathematically, order dispatching can be modeled as
a bipartite matching problem. Specifically, drivers and or-
ders are modeled as nodes on the two sides of bipartite
graph and an edge between two nodes represents a po-
tential assignment. Accordingly, finding a dispatch decision
between drivers and orders is converted into calculating
bipartite matching. The bipartite matching formulation nat-
urally leads to solutions from a combinatorial optimization
perspective [3], [4], [5], [6], [7]. Despite decades’ of research,
pure combinatorial optimization based strategies still fail to
deliver the theoretically claimed performance in practice.
Empirical studies show that many methods even cannot
beat the naive greedy algorithm [4]. This is because combi-
natorial optimization solutions are often myopic and reply
on strong assumptions, preventing them from handling the
following challenges in real-world ride hailing.
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• Complex dynamics of demand and supply. Most com-
binatorial optimization solutions oversimplify the
spatial distribution of demand and supply e.g., as-
suming the potential drivers upcoming following
Zipf’s Law [8] or some known independent identical
distribution fitted on history data [9]. In practice, taxi
demand can be highly irregular and volatile due to
diverse factors such as rush hour, weather, events
and so on. The supply can also be capricious in space
due to the drivers’ idle cruising, which is difficult to
model and predict.

• Temporal dependency among dispatching decisions. Com-
binatorial optimization methods tend to assume in-
dependent decisions. Nevertheless, former dispatch-
ing decisions can affect later ones since the previ-
ously dispatched drivers are likely to appear near
the destinations of their assigned orders later, which
can change the supply distribution in subsequent
dispatching time frames.

The availability of big data provides an opportunity to
augment combinatorial optimization based solutions from
a data-driven perspective [10], [11], [12], [13], [14]. Recent
efforts have exploited data mining techniques [12], [13], [14]
to predict demand and supply rather than reply on simpli-
fied assumptions of their distributions for order dispatch-
ing. However, since these methods overlook the impact of
prior dispatching on the supply distribution in subsequent
dispatches, their predictions tend to deviate from actual
ones, thus limiting their effectiveness. A few pioneer studies
[10], [11] propose to jointly optimize a batch of dispatching
decisions as a sequential decision problem, which can be
solved by reinforcement learning [15]. In the reinforcement
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learning setting, the platform learns the best dispatching
strategies for a given time period from big historical data of
supply, demand and dispatching decisions. This setting not
only eliminates pre-assumptions on supply and demand,
but also explicitly account for the dependencies among dis-
patches. However, as early explorations to integrate combi-
natorial optimization with reinforcement learning, existing
proposals [10], [11] lack systematic designs to optimize the
interplay between these two paradigms. For example, both
[10] and [11] only apply reinforcement learning to augment
combinatorial optimization. Such a unidirectional integration
restricts the potential performance gains. In addition, the
data-driven nature of reinforcement learning may bring ad-
verse effect to combinatorial optimization, which can even
jeopardize the performance.

In this work, we propose Learning To Dispatch (LTD),
a systematic solution that allows synergic integration of
reinforcement learning and combinatorial optimization for
large-scale taxi order dispatching. For effective augmenta-
tion of reinforcement learning to combinatorial optimiza-
tion, we adopt an online learning manner to adapt the
learned dispatching strategies to the current situations. To
avoid the cold start problem in reinforcement learning,
we devise a combinatorial remedy i.e., driver scheduling.
We also propose optimizations to optimize the efficiency
to apply reinforcement learning in large-scale settings. Ex-
tensive evaluations show that our bi-directional integration
outperforms among all baselines by up to 36.4% and 42.0%
on utility and efficiency. We also outperform the state-of-
the-art method [11] by up to 28.7% on utility. Our main
contributions are summarized as follows.

• We study the problems and solutions to integrate
reinforcement learning with combinatorial optimiza-
tion for taxi order dispatching. We demonstrate the
necessity of online learning and taxi scheduling for
reinforcement learning to work in synergy with com-
binatorial optimization for effective taxi dispatch-
ing. To the best of our knowledge, we are the first
to explore the best practices to combine these two
methodologies for ride hailing services.

• We devise many tricks for more efficient calculation
of the bipartite matching. By adopting shared value
function and approximation, we largely reduce the
size of value function and help better exploration.
We also use breadth first search to split the bipartite
graph into several parts for a higher execution effi-
ciency. These accelerations make our algorithm suit-
able for large-scale and high-frequency dispatching
operations.

• We conduct experiments on a simulator developed
by a major ride hailing platform based on real history
data. The experiment results indicate that our newly
proposed algorithm outperforms the baselines on
utility and efficiency by up to 36.4% and 42.0%,
respectively. A preliminary version of this work won
the championship of KDD Cup 2020 reinforcement
learning track order dispatching task1. Our perfor-
mance of utility is the state-of-the-art.

1. https://www.kdd.org/kdd2020/files/KDD Cup Day Program.pdf

The rest of this paper are organized as follows. We
provide a review of related work in Sec. 2. In Sec. 3 we
define our problem. We explain the reinforcement learning
model and our algorithms in Sec. 4 and Sec. 5, respectively.
In Sec. 6 we present the evaluations and conclude in Sec. 7.

2 RELATED WORK

Our work studies order dispatching problem, the central
issue in ride hailing applications.

Order dispatching is a typical task assignment problem
[16] in spatial crowdsourcing [17], where the tasks and
workers are orders and drivers respectively. The problem
is commonly modeled by online bipartite graph matching
[18], [19] with different objectives like maximizing the total
revenue [2], [3], [18], minimizing the total waiting time
of passengers [4], etc. This work mainly focuses on the
maximum matching. We divide existing solutions into two
categories: combinatorial optimization based approach and
reinforcement learning based approach.
Combinatorial Optimization based Approach. In the early
stage of ride hailing, the most widely adopted approach is
the Greedy algorithm, which assigns an order to the closest
driver [20], [21]. With the development of mobile Internet
and sharing economy, ride hailing platforms such as Uber
have emerged. These shared-mobility platforms are capable
of collecting massive historical spatiotemporal data in order
dispatching. Extensive studies [3], [4], [5], [6], [7], [18], [22],
[23], [24] focus on designing wiser optimization algorithms
with the help of historical data, considering that mining
patterns from historical data would make dispatching more
comprehensive. In [6] and [7], the order dispatching prob-
lem is modeled as a bipartite matching or max flow problem
[25] and classical combinatorial optimization methods like
the Hungarian algorithm [26] is applied. However, these
works assume the bipartite graph is static, which is in-
consistent with the real ride hailing applications. [18] is
the first work to model the problem by two-sided online
bipartite matching, where both orders and drivers appear
dynamically. Some other works [5], [22] model order dis-
patching as an Integer Linear Programming (ILP) problem
[27], where the order arrival distribution is considered. The
drawback of ILP model is its large time consumption and [3]
proposes a hill climbing method to improve the efficiency
and [24] propose index structure for acceleration and adopt
a carpooling order dispatching manner.

There is rich literature on dispatching solutions with
theoretical performance guarantees on the worst cases. How-
ever, [4] systematically compares these methods and finds
that Greedy has good performance in real scenarios as the
worst case happens rarely. Therefore some work [18] inves-
tigates the average (or expected) theoretical performance.
These studies indicate that instead of stressing too much
on theoretical guarantees, an algorithm with good empir-
ical performances yet lacking guarantees would be more
practical. Following this philosophy, recent studies manage
to adopt learning-based manners into the combinatorial
optimization, especially reinforcement learning, as we will
explain next.
Reinforcement Learning based Approach. Reinforcement
learning shows great power on solving problems with
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sequential decisions and temporal dependencies2. In rein-
forcement learning, an agent interacts with the environment
repeatedly. In each round, the agent takes an action ac-
cording to some policy, gets reward from the environment
and transits to a new state. The goal is to design a good
policy that can maximize the accumulated rewards over
all rounds [28]. Such a formulation fits the problem setting
of order dispatching. In order dispatching, the dispatching
decisions are made sequentially with certain reward (rev-
enue of orders) as feedback. A decision will also affect the
environment by changing the distribution of drivers, which
makes it a typical sequential decision making problem.
Reinforcement learning solves the problem by learning how
to make decisions from massive historical data.

A few works have investigated reinforcement learning
in order dispatching. [10] models the platform as the agent,
the global dispatching decisions as the actions and solves
the problem by Q-learning [29] with tabular Q-values. This
work also combines learning with optimization but the
learning process is separated in an offline manner. Our ap-
proach is more adaptive by integrating both online learning
and scheduling. More recent studies [11], [30] further adopt
deep neural networks to fit more complicated state value
functions. Instead of directly making dispatching decisions
by reinforcement learning, [2] uses reinforcement learning
to dynamically changing the batch sizes in a batch-based
dispatching framework while the decisions remain static
in each batch. Unlike prior works adopt reinforcement
learning in a relatively independent manner, we combine
the reinforcement learning and combinatorial optimization
more tightly making them work in synergy, which largely
hoists the performance.

Some other works apply multi-agent reinforcement
learning (MARL) [31] to order dispatching. For example,
[32] models each area as an agent and optimizes the dis-
patching performance by reshaping the areas. In [33], [34],
each driver is modeled as an agent, and dispatching de-
cisions are made in an decentralized way. However, they
ignored that drivers may compete with each other for
personal profits and the global profits will be damaged. To
address this issue, we consider centralized synchronization
by the platform in a multi-agent model.

3 PROBLEM DEFINITION

This section formally defines the general order dispatching
problem in ride hailing following [2], [4], [10], [11], [18].

Definition 1 (Batch). Assume time is evenly split by a sequence
of batches 〈1, 2, · · · , T 〉. A batch (i.e., time step) t is an element
in the batch sequence, which is also known as a time index.

The batch based time model is common in real ride
hailing platforms [10], [11]. A typical batch size is 2 seconds.

Definition 2 (Order). An order (i.e., a taxi hailing request)
r is denoted by a tuple 〈or, dr, pr, τr〉, where or, dr, pr and τr
represent the origin, destination, estimated price and estimated
duration time of order r, respectively.

2. https://deepmind.com/research/case-studies/alphago-the-story-
so-far

In real ride hailing applications, the origin and destina-
tion are input by the passengers in the form of latitude and
longitude. We make no assumption about their distribution.
The platform will estimate the price and duration time
based on the trip mileage and other factors (e.g., traffic
congestion) after receiving the passengers’ requests. The
concrete estimation methods are out of our scope. We as-
sume the duration time is a multiple of batch size due to the
small batch size.

Definition 3 (Driver). A taxi driver w is denoted as a tuple
〈l(t)w , ξ

(t)
w 〉, where l(t)w and ξ(t)w represent the location and status of

driver w in batch t, respectively.

The status ξ(t)w can be either “idle” or “occupied”, indi-
cating whether the platform can assign orders to the driver.
We assume the status stays the same within one batch. An
occupied driver will appear as “idle” at the destination of
his assigned order after finishing the trip. This is known as
the “reusable” driver setting [22], which is more realistic
than the independent identical distribution setting [35],
where every idle driver is taken as newly and independently
coming nodes following the same distribution. Note that the
reusable setting captures the temporal dependency property,
i.e., current dispatching decisions will influence the distri-
bution of drivers in the future.

Definition 4 (Dispatching Candidates). The dispatching can-
didates in batch t is represented as a bipartite graph G(t) =
〈R(t),W (t), E(t)〉 where R(t) is the set of orders appearing in
batch t, W (t) is the set of idle drivers in batch t and E(t) is the
set of edges i.e., eligible order-driver pairs. Each edge e in E(t) is
denoted by 〈r, w, xr,w〉, where r, w and xr,w represent the order,
driver and edge weight, respectively.

The graph is often incomplete as an edge will be pruned
if the distance between an order’s origin and a driver’s
location exceeds a threshold θ like 3km. The weight xr,w
is initially set to the price pr of order r.

Definition 5 (Cancel Probability). The cancel probability λr,w
refers to the probability of canceling an order r when it is assigned
to driver w.

An order can be canceled if the assigned driver is too far-
away. The cancel probability λr,w increases monotonically
with the order-driver distance. It is a hidden variable and we
can only know whether an order will be canceled after the
dispatching decision is made. The cancel probability makes
our problem setting more aligned with real applications.
That is, the solution has to tolerate some impatient passen-
gers that may cancel the order with too long waiting time.
In contrast, some works [2], [5] optimize the total revenue
by assigning orders to unreachable drivers and ignore the
possibility of canceling.

Definition 6 (Dispatching Algorithm). In batch t, a dis-
patching algorithm A takes the dispatching candidates, i.e., the
bipartite graphG(t) as input, and outputs the matching allocation
M (t). M (t) is a subset of edges (i.e., order-driver pairs) in G(t)

representing the order dispatching decisions.

In each batch, the algorithm is executed by the ride hail-
ing platform. The dispatching algorithm is not necessarily
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stationary, since historical data may affect future decisions.
We still use A instead of A (t) for simplification.

Definition 7 (Utility Score). The utility score of a matching
allocation is defined by

U(M (t)) =
∑

(r,w)∈M(t)

xr,w · (1− Iλr,w
)

where Iλr,w
∼ Bernoulli(λr,w).

Definition 8 (Order Dispatching Problem). Given a batch
sequence 〈1, 2, · · · , T 〉 and a sequence of dispatching candidates
〈G(t)〉, the order dispatching problem is to decide a dispatching
algorithm A in each batch to maximize the total utility score, i.e.,

max
T∑
t=1

U(M (t)) (1)

We call the order r is responded if the algorithm assigns a
driver w to it. We call the order r is completed if the assign-
ment is not canceled (i.e., Iλr,w

= 0). Table 1 summarizes the
frequently used symbols in this paper.
Remark. Our problem is general and aligned with real
scenarios due to the following reasons.

• We make assumptions on neither drivers (distribu-
tions of their locations) nor orders (distributions of
their origins, destinations or arrival time).

• We consider the cancel probability. It encourages the
dispatching algorithm to assign orders to nearby
drivers, which can increase passengers’ satisfaction.

4 REINFORCEMENT LEARNING MODEL

Reinforcement learning (resp. Multi-agent reinforcement
learning) tries to maximize the accumulate rewards as agent
(resp. agents) interacts with the environment. In our prob-
lem setting the dispatch decision of former rounds will
influence the driver distribution, thus posing an impact
on latter dispatch. Our problem also includes thousands of
drivers. So it is natural to view each driver as an agent and
adopt multi-agent reinforcement learning.

A multi-agent reinforcement learning model consists
of environment, agents, state, reward, value function and
discount factor. The paradigm of multi-agent reinforcement
learning involves agents who take actions based on policies
derived from value functions. Upon agents taking action,
either independently or collaboratively, the environment
will feedback the states and rewards to agents. Agents will
then update their value functions based on environment’s
feedback for better policy. The discount factor is a weight
guiding the agent pays more attention on immediate reward
rather than future expectation. We will expound details of
each composition below.
Environment. The environment will build the bipartite
graph, simulate transition of agents’ states, and feedback
the rewards and states back to agents. Note that the envi-
ronment needs to reflect the dynamics of traffic situation,
which poses a large impact on the order estimation time
of arrival, order price and so on. The traffic situation range
will reflect on the history data and the build of simulation
environment will be introduced in Sec. 6.

TABLE 1
Summary of symbols.

Notation Description
T total number of batches
t a batch
R(t) set of merged order in batch t
W (t) set of available drivers in batch t
l
(t)
w , ξ

(t)
w location and status of driver w in batch t

or, dr origin and destination of order r
pr, τr estimated price and duration time of order r
G(t) dispatching candidates in batch t
E(t) edges in G(t)

M(t) matching allocation on G(t)

λr,w cancel probability of assigning r to w
xr,w weight of edge (r, w)
θ threshold of order-driver distance
U utility score
A dispatching algorithm
G taxi scheduling algorithm
S (t) scheduling scheme in batch t
I(t) idle drivers in batch t
AS

(t)
w action space of agent w in batch t

S
(t)
w state of driver w in batch t
δ space discretion function
δS discretion function based on square grid
δH discretion function based on hexagon grid
γ discount factor
VS value function of square state
VH value function of hexagon state
V (l) final value of location l
µr,w evaluation term of edge (r, w)
x′r,w new edge weight after redefinition
P (t) sub-bipartite of G(t)

b normalization factor for value function
DIR smooth direction set
C, k parameter for cancel probability prediction
dist(r, w) distance between order r and driver w

Agent and action space. We adopt multi-agent reinforce-
ment learning model and model each driver as an agent
instead of modeling the platform as the only agent to largely
reduce the action space of agent. If we model only one
agent, then the action of the agent is the results of the
bipartite matching, which leads to a large action space. The
multi-agent formulation, however, reduces the action space
of each agent, with only several candidate assignments.
Specifically, the action space AS(t)

w of agent w in batch t is
getting some order r from candidate assignment of bipartite
or remain idle next batch, i.e., AS(t)

w = {Ar, |〈r, w〉 ∈
G(t)} ∪ {idle}. Different from traditional multi-agent rein-
forcement learning, one order can only be assigned to one
agent and vice versa, so conflicts may occur if agents take
actions directly. To solve this, each agent only proposes the
action he or she wants to take, and the matching component
will make the final decision in a global view, which will be
explained in Sec. 5.3.

States and transitions. Since order dispatching has long
been categorized as a spatial temporal problem, it is natural
to set the state S(t)

w of agentw in batch t contains both spatial
and temporal information, i.e., S(t)

w = 〈l(t)w , t〉. However,
this will cause the curse of dimensionality. For example,
if we cut the whole day into 10-minute length segment
and split the city area into square grids whose side length
are 500m, there will be 144 time segment and 1600 grids
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(assuming the city covers a square area of 20km side length),
hence the total spatial temporal space number would be
144 × 1600 = 230400. This is much greater than an agent
exploration ability (each driver can only serve 20˜30 orders a
day and the explored states will be less than 102). Though a
neural network may overcome the curse of dimensionality,
in large-scale ride hailing, however, forward propagation in
large neural network would be too time-consuming. So we
still adopt tabular solution (i.e., state number is finite and
the value function can be expressed as a table).

Noting that most orders do not last long (within an
hour) and it is reasonable to use the current evaluation to
approximate the future one, we reduce the state number by
using only the spatial information. That is, location l

(t)
w of

agent w in batch t, and the state S(t)
w can be expressed as:

S(t)
w = δ(l(t)w ) (2)

where δ is the discretion function to map location to state.
We discretize the agent location by meshing (i.e., split the
whole geographical space into small adjacent grids). We
adopt two types of grids: square and hexagon. Their shape
boundaries have different number and directions, making
the value function more adaptive to the urban layout (see
Sec. 5.2.1). The discretion function using two types of grids
are denoted as δS and δH , respectively. Then the state
becomes a tuple S(t)

w = 〈δS(l
(t)
w ), δH(l

(t)
w )〉

The state transition depends on the order’s origin and
destination. If an agent w gets an order r from or to dr , then
its state transits from 〈δS(or), δH(or)〉 to 〈δS(dr), δH(dr)〉.
Discount factor. The discount factor γ is a hyper parameter.
It can be viewed as a weight, indicating the confidence for
the evaluation of the future. As mentioned before, we use
the current evaluation to approximate the future one, so an
order with long trip duration will weaken the confidence
on the approximation. To account for such variation in the
confidence, we adopt trip duration into the discount factor.
Specifically, the discount factor will decay exponentially to
the order duration τr (i.e., γτr ).
Reward. Reward R is the immediate gain of each assign-
ment. Our goal is to maximize the total revenue, so we set
the reward to the order price. Since we need to make the
matching decision before the order finish, the price we use is
a predicted price, which may slightly differ from the actual
one. The predicted price is given by the platform as input
and the its calculation is out of scope of this paper.
Value function. In reinforcement learning, there are two
types of value functions. One is state value function, de-
noted as V . It maps the state S(t)

w to the expected accumu-
lated reward from this state, i.e., V (S

(t)
w ) = E[

∑
tR

(t)|S(t)
w ].

The other is action-state value function, denoted as q. It
maps the state and action 〈S(t), A〉 to the expected accu-
mulated reward from this state S

(t)
w taking action A, i.e.,

q(S(t), A) = E[
∑
tR

(t)|S(t)
w , A]. In a model-free situation,

where little is known about the environment, we usually
derive policy π based on action-state value function q. In
ride hailing, however, the action space AS is changing in
different batches, causing a tabular q infeasible. Neverthe-
less, for high efficiency, the tabular method is preferred than
neural networks. Hence we derive our action decision based

on V rather than q. In our method, the policy π is derived
by Hungarian based matching (see Sec. 5.3) in a holistic
manner over all agents and it is implicit, so for simplicity,
we omit the notion π. Since we have set the state of agent to
the location, the state value function Vw of agent w can be
defined as follows:

Vw(S(t)
w ) = E[

∑
t

R(t)|S(t)
w ] (3)

To reduce the value function space for better exploration,
we apply the following strategies.

• Share value function among agents. To ensure the value
function will be fully trained, all agents share the
same value function. The intuition is that the match-
ing algorithm will treat all drivers equally, so each
driver will have a similar evaluation on the same
location. This trick makes all agents work collabo-
ratively. For instance, a driver is working east of a
city, and now comes an order heading for the west.
Since the driver has not been to the west yet, without
the shared value function, he cannot make an accu-
rate evaluation of the destination. However, drivers
working in the west can make an evaluation by their
value functions. By value function sharing, the driver
in the east can utilize this information to evaluate
the destinations he/she has never been. We omit the
subscriptw to denote the shared value function. Thus
the value function is defined as follows.

V (S(t)) = E[
∑
t

R(t)|S(t)] (4)

• Adopt two value functions for different discretion states.
As mentioned above, state S

(t)
w is a tuple derived

by two functions δS and δH . Direct mapping from
a tuple to the value introduces a large value function
space to explore. Thus, we adopt two value functions
VS and VH to map δS(l

(t)
w ) and δH(l

(t)
w ) separately.

VS(δS(l(t)w )) = E[
∑
t

R(t)|δS(l(t)w )] (5)

VH(δH(l(t)w )) = E[
∑
t

R(t)|δH(l(t)w )] (6)

To derive the final value functions from VS and
VH , we design a neighborhood averaging method to
better adapt to different urban layouts (see Sec. 5.2.1).

Our multi-agent reinforcement learning model charac-
terizes the essence of our problem (such as temporal depen-
dency). As next, we describe how to integrate this model
into our dispatching algorithm.

5 METHOD

In this section, we present our Learning To Dispatch (LTD)
framework, which consists of two components: Learning-
based Evaluation and Optimization-based Matching.
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Fig. 1. The LTD framework. yellow and green boxes indicate evaluation and matching component, respectively. grey arrows indicate interactions
between two components.

5.1 Framework Overview
The framework of LTD is illustrated in Fig. 1. It consists of
two components: Learning-based Evaluation and Optimization-
based Matching. The two components are performed itera-
tively repeatedly every batch. Learning-based Evaluation is
built on the model in Sec. 4 which aims to evaluate the
value of each candidate assignment based on previous deci-
sions and corresponding rewards. Optimization-based Match-
ing makes dispatching decisions by an optimized Hungarian
algorithm, taking the evaluated values as part of weights on
the bipartite graph. Afterwards, the dispatching decisions
will feed back to the evaluation component for updating
values. The two components will run in a circle with the
following interactions:

• From evaluation to matching. The matching compo-
nent takes the value function produced from the
evaluation component as input, and reformulate the
bipartite graph based on the values.

• From matching to evaluation. After the matching com-
ponent finds the matching allocations, the decisions
will be sent to the evaluation component. The value
function will be updated based on the decisions.

Alg. (1) illustrates the entire process. We explain the two
components in detail as below.

5.2 Learning-based Evaluation
This component has two parts: the first explains how to infer
the values given specific states, and the second reveals how
to learn the values by temporal difference (TD) learning.

5.2.1 Inferring the Values
We use two value functions, i.e., square value function VS
and hexagon value function VH to represent the state values,
as mentioned in Sec. 4.

Algorithm 1: LTD
Input: The bipartite graph

G(t) =< R(t),W (t), E(t) >, idle drivers I(t)

Output: Matching M (t), scheduling scheme S (t)

1 if t = 1 then
2 VS ← 0
3 VH ← 0
4 end
5 if t mod SchedulingInterval = 0 then
6 S (t) ← G (I(t))
7 end
8 else
9 S (t) ← ∅

10 end
11 calculate V by Eq. (7)
12 calculate new edge weights by Eq. (12)
13 M (t) ← A (G(t))
14 for 〈r, w〉 ∈M (t) do
15 update VS by Eq. (8)
16 update VH by Eq. (9)
17 end
18 return M (t),S (t)

To enrich the features, we apply tile coding [28], and the
value function can be defined as

V ← b · (
∑

dir∈DIR
(V (δS(l + dir)) + V (δH(l + dir))) (7)

where DIR is the tiling directions (shapes) and b is a
normalization factor. We omit the superscript (t) and sub-
script w for simplification. The tile coding makes the value
function more adaptive to urban layouts. Square boundaries
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(a) (b)

Fig. 2. Hexagon and square value functions VS and VH at 9:00am.
Warmer colors indicate higher values.

are parallel to longitude and latitude lines, showing regional
patterns such as busy areas (see Fig. 2(a)), while hexagon
boundaries have more directions and show a radial pattern
aligned with trunk roads (see Fig. 2(b)). For simplification,
we use V (l) to represent the entire value function in Eq. (7).

5.2.2 Learning the Values
We learn the state value function V by temporal difference
(TD) learning. TD learning [15] is a classic learning method
in reinforcement learning. It is a model-free method, since
it estimates the value function without any information or
assumptions about the environment. Specifically, it learns
the value function by synthesizing the immediate rewards
and bootstrap approximation to future rewards. The im-
mediate rewards may contain several steps, which derives
different TD method, such as TD(0) (immediate rewards
within one step), TD(λ) (immediate rewards within steps
taking λ proportion of the total steps in one episode.) We
choose online TD(0) for the following reasons:

• Online v.s. Offline. Some studies [10], [11] learn the
value function offline with massive historical data.
Yet offline learning has shortcomings. The value
function V is strongly correlated with the matching
algorithm. There is a gap between the matching rules
behind the historical data and the online matching
decisions following V , which may cause inconsis-
tency and thus huge errors. In contrast, online learn-
ing ensures consistent decisions in both learning and
matching. Instead, online updating of value function
can stay adaptive to the test environment.

• TD(0) v.s. TD(λ). In TD(λ) or Monte Carlo method,
there is a delay between the learning and the real-
time decision making steps. In other words, the
values are updated with several further steps of
decisions. However, in ride hailing, the duration of
each order varies dramatically. Therefore, different
agents may transit to their next states at different
time steps. The error will accumulate with steps and
thus we choose only one step look ahead i.e., TD(0).

According to the online TD(0) learning algorithm, if
driver w takes order r in batch t, the updating of value
functions VS and VH will be:

VS(δS(l(t)w ))← VS(δS(l(t)w )) + α∆S (8)

VH(δH(l(t)w ))← VH(δH(l(t)w )) + α∆H (9)

where α is the learning rate, ∆S = pr + γτrVS(δS(dr) −
VS(δS(l

(t)
w ))) and ∆H = pr+γτrVH(δH(dr)−VH(δH(l

(t)
w ))).

Algorithm 2: Scheduling algorithm G

Input: Idle drivers I(t)

Output: scheduling scheme S (t)

1 S (t) ← ∅
2 for w ∈ I(t) do
3 find h that can maximize ∆V in Eq. (10)
4 S (t) ← S (t)

⋃
{〈w, h〉}

5 end
6 return S (t)

5.2.3 Cold start correction

The value V (l) indicates the expected accumulated rewards
from location l since now. With this information, we can ac-
tively schedule idle drivers to areas for a better distribution.
We can evaluate the value increment as Eq. (10).

∆V = γdurV (h)− V (lw) (10)

where dur is the duration of driver w from location lw to
area h, whose candidate set is the same as hexagon tiles.
Note that directing a large number of drivers to one area
may notably change the value function and thus impair
its accuracy. However, since the drivers can be assigned
with orders during scheduling, few drivers will reach the
destination finally. Thus little impact is imposed on the
value function. Alg. (2) shows the scheduling algorithm.
This algorithm is executed in a relatively low frequency(e.g.,
for 150 batches).

5.3 Optimization-based Matching

The matching component is designed to make dispatching
decisions based on the learned values. There are two chal-
lenges in designing the matching algorithm.

• Lack of a holistic view. There are problems if agents
greedily make decisions by themselves. (i) There may
be conflicting dispatching decisions. This may break
the capacity constraint, i.e., each order can only be
assigned to one driver. (ii) Making decisions on their
own benefit may trap in a local optimum.

• Need for real-time response. Large-scale ride hailing
demands fast response, i.e., high matching efficiency.

To solve the first challenge, we combine value learning
with the Hungarian algorithm. For the second, we devise
acceleration techniques to improve the efficiency.

5.3.1 Hungarian Matching with Values

We first reformulate the edge weights as:

x′r,w ← (1− λr,w) · (xr,w + µr,w) (11)

where λr,w is the cancel probability and µr,w is the TD error
with the following definition:

µr,w = γτrV (dr)− V (lw) (12)

Intuitively, it indicates the expected accumulated reward
gain if the driver moves from current location lw to dr .
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We use an exponential distribution to estimate the cancel
probability λr,w with historical data.

λr,w = C · exp{k · dist(r, w)

θ
} (13)

where dist(r, w) is the order-driver distance, θ is the thresh-
old, C and k are parameters of the exponential distribution.

Compared with the old edge weight xr,w, i.e., the myopic
revenue of the current order r, the new edge weight x′r,w
is more farsighted, as it considers how much expected
total revenue the agent (i.e., the driver w) will obtain if
assigned to order r. For example, if the destination of r
is in downtown, which means the driver may have more
opportunities to take orders with high revenue, the edge
weight will be larger and vice versa.

However, if each agent w takes action greedily according
to all the candidate orders to itself, i.e., it chooses the order
r∗ = arg maxr xr,w, there will be conflicts as the same order
may be assigned to multiple drivers. Hence we enforce all
the agents to take actions in a global view by solving the
maximum bipartite matching problem with the Hungarian
algorithm [26]. The time complexity is O(N4) where N =
max{|W (t)|, |R(t)|}.

5.3.2 Matching Acceleration Techniques
In large-scale ride hailing, the matching algorithm is exe-
cuted frequently. Especially in rush hours when the num-
bers of orders and drivers are large, the time complexity of
O(N4) can be intolerable. Meanwhile,the bipartite graph in
our case is highly unbalanced. Usually the number of orders
is far more than that of drivers. Thus, we adopt the slack
optimization [36] in the Hungarian matching algorithm. It
models the assignment problem as a max-flow problem.
To avoid explicit construction of network flow graph, the
optimized algorithm adds maintain tags on each nodes
(called slack array) to record the current flow.

Furthermore, note that in real geometrical space the
bipartite graph can be sparse as there is no edge between
distant drivers and orders. So we use breadth first search
(BFS) to split the graph into multiple sub-bipartite graphs
and solve the multiple sub-bipartite matching problem in-
dependently. There are also many sub-bipartite graphs that
contain only one driver or one order, and we use a naive
greedy decision instead of the Hungarian algorithm for such
special cases for further accelaration.

The details of the optimized matching algorithm are
illustrated in Alg. (3). In Line 1-4, we use Eq. (11) to reformu-
late the weights based on value function calculated by the
evaluation component. Then in Line 5 we use BFS to split
the bipartite graph. In Line 7-20, the algorithm calculates the
matching allocations in each sub-bipartite graph iteratively.
If the graph contains only one driver (order), we directly
choose the order (driver) with the largest edge weight, as
shown in Line 8-11 (12-15). Otherwise we calculate the
matching allocation using the Hungarian algorithm with
slack optimization (Line 16-18).

5.3.3 Complexity Analysis
We analyze the time complexity of Alg. (3) as below. With
the slack optimization, the time complexity of Hungar-
ian algorithm is reduced from O(N4) to O(M2N), where

Algorithm 3: Matching algorithm A .
Input: The bipartite graph

G(t) =< R(t),W (t), E(t) >
Output: Matching M (t)

1 for 〈r, w, xr,w〉 ∈ G(t) do
2 calculate x′r,w by Eq. (11)
3 x′r,w ← xr,w
4 end
5 P (t) ← split G(t) by BFS.
6 M (t) ← ∅
7 for p ∈ P (t) do
8 if there is only one driver w then
9 r∗ ← arg maxr x

′
r,w

10 Mp ← {〈r∗, w〉}
11 end
12 else if there is only one order r then
13 w∗ ← arg maxw x

′
r,w

14 Mp ← {〈r, w∗〉}
15 end
16 else
17 Mp ← Hungarian(p)
18 end
19 M (t) ←M (t)

⋃
Mp

20 end
21 return M (t)

N = max{|R(t)|, |W (t)|} and M = min{|R(t)|, |W (t)|}.
With the optimization of bipartite graph splitting, the time
complexity becomes O(

∑
P (t) M2

P (t)NP (t)), where P (t) is
a sub-bipartite graph, N = min{|{r|r ∈ P (t)}|, |{w|w ∈
P (t)}|} and M = min{|{r|r ∈ P (t)}|, |{w|w ∈ P (t)}|}. In
the worst case, the entire bipartite graph is connected and
cannot be split and the time complexity remains O(M2N),
while in most cases, the bipartite graph can be split and
the complexity would be reduced. Experimental results in
Sec. 6 show that our optimization techniques improve the
efficiency by up to 42.0%.

5.4 A Running Example of LTD

We now give an example in Fig. 3 to illustrate our method.
For simplification, we only consider the square value func-
tion. We omit the scheduling step since the calculation is
almost the same, We also assume the cancel probability is 0
and the discount factor is 1. Our approach contains 4 steps
in a batch: building graph, reforming weights, matching and
updating.

• Building graph. There are two drivers w1, w2 and
two orders r1, r2. The prices of r1 and r2 are 4
and 5, respectively. For each order we choose the
drivers within the distance threshold θ and build
the bipartite graph with the price of orders as edge
weights.

• Reforming weights. We reform the weights by the
current value function based on Eq. (11). In this
example, the weights of edges between r1, w1, r1, w2

and r2, w1 are 3.1, -1.8 and 4.6 respectively.
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Fig. 3. An running example of our LTD.

• Matching. We run the Hungarian algorithm (we omit
the optimizations for simplification) to calculate the
maximum matching allocation, i.e., {〈r2, w1〉}.

• Updating. Based on the matching results, we update
the value function by Eq. (4). In this example, the
value in driver w1’s location is updated to 2.51.

If we directly execute the Hungarian algorithm on
the original bipartite graph, the matching result is
{〈r1, w2〉, 〈r2, w1〉}, whereas our approach has only
matched one order. The intuition behind such decision (we
do not match w2 to r1) is that w2 is in a pretty good location:
the value of lw2 is 7, far higher than other places which
means more orders with high prices may appear in this grid
in the future. In that case, driver w2 is unwilling to move to
other grids unless for orders of sufficiently high price.

6 EXPERIMENT

6.1 Experiment Setting

Datasets and Simulation Environment. We conduct exper-
iments on a simulator developed by a major ride-hailing
platform. The simulator adopts batch-based dispatching
with a batch size of 2 seconds. In each batch, it builds
a bipartite graph based on the location of current idle
drivers and the newly upcoming orders. Then the simulator
executes the dispatching algorithm and cancels orders ac-
cording to a cancel probability distribution that is unknown
to the dispatching algorithm. Afterwards, it simulates the
dynamics of the system, including the pick-up and delivery
behavior of occupied drivers, random walks of idle drivers
and the log-on and log-off of idle drivers. The simulator is
built on real historical order and driver data in 3 cities in
China (A, B and C) with 3 weeks. The average daily order
number in the largest city is nearly 1 million.
Baselines. We compare LTD with 4 dispatching algorithms.

• Greedy Algorithm (GRE): a classical and naive dis-
patching solution. It sorts all edges on the bipartite

graph by the descending order of edge weights in
each batch, and then makes assignments by succes-
sively picking the edges with the largest weight and
deleting it from the graph.

• Hungarian Algorithm (HUN) [36]: it executes the
Hungarian algorithm on the bipartite graph in each
batch and takes the matching results as dispatching
decisions directly. We use the Hungarian algorithm
with the slack optimization.

• Nearest Neighbor Priority (NNP) [6]: it converts the
matching problem to a minimum cost maximum
flow problem, where the cost is the distance between
order and driver. The algorithm finds the matching
allocation with the maximum matching cardinality
and the minimum total cost in each batch.

• V-Net [11]: it trains the value function with deep
neural network on historical data and assigns orders
to drivers according to the learned value function. It
is the deep reinforcement learning extension of [10].

Parameter Settings and Implementation. In our LTD, the
learning rate α, discount factor γ are set to 0.025 and 0.9,
respectively. The distance threshold θ is set to 3km. The side
lengths of square and hexagon grids are set to 1100m and
645m. The parameters C and k in Eq. (13) are set to 0.01 and
ln 20. All algorithms are implemented by Python 3 and the
experiments are conducted on Intel Xeon CPU E5-2630 v4 @
2.20GHz with 12GB memory.

Evaluation metrics. We compare the performance of differ-
ent algorithms via the following metrics.

• Total Utility (U ): the summation of all the revenue of
completed orders (see Eq. (1)).

• Respondence Rate (RR): the ratio of number of as-
signed orders to total number of orders, i.e.,

RR =

∑T
t=1 |{o|∃d, s.t.(o, d) ∈M (t)}|∑T

t=1 |O(t)|
(14)
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• Completion Rate (CR): the ratio of the number of
completed orders to the total number of orders, i.e.,

CR =

∑T
t=1 |{o|∃d, s.t.(o, d) ∈M (t) ∧ IB(λo,d) = 0}|∑T

t=1 |O(t)|
(15)

• Time Consumption (TC): the time consumed for
executing the matching algorithm.

A higher RR or CR often contributes to a higher U , so they
are also utility metrics. A higher RR or CR also means a
passenger is more likely to be served, indicating a higher
user satisfaction. Time consumption is the efficiency metric.

6.2 Utility Results
Table 2 summarizes the overall results of U , RR and CR.
Metrics Comparison. Fig. 4(a), Fig. 5(a) and Fig. 6(a) illus-
trate the total utility comparisons over three cities. Influ-
enced by weather, day of week and other contextual reasons,
the order numbers and total utility varies with date. Our
proposed method outperforms the baseline GRE in every
city and on every day by 10.9% ˜36.4%. Fig. 4(b), Fig. 5(b)
and Fig. 6(b) summarize the comparison on RR. Still, our
LTD consistently outperforms the others. Specifically, LTD
achieves a 36.8% improvement at maximum and 19.1% on
average. The results on CR are similar (see Fig. 4(c), Fig. 5(c)
and Fig. 6(c) ). LTD shows an enhancement at 19.8% and
37.9% on average and at maximum, respectively. As for the
state-of-the-art V-Net, LTD outperforms 9.6%, 10.1% and
11.4% averagely on U , RR and CR, respectively.
Illustration of LTD’s Advantages. We provide an intuitive
illustration for why our LTD performs better than other
methods. To be more conspicuous, we choose the most basic
baseline GRE to compare with our LTD (see Fig. 7). We draw
the spatial distribution of order-driver gap. Warmer colors
indicate severer gap between orders and available drivers
and requiring more drivers, while colder colors mean a
superfluous number of drivers. A good order dispatch al-
gorithm should maintain the balance between orders and
drivers, which, reflecting on figures, means less warmer
and colder areas. Compared with V-Net (see Fig. (a)), LTD
(Fig. (b)) maintains more balance between the number of
orders and available drivers.

6.3 Efficiency Results
Fig. 4(d), Fig. 5(d) and Fig. 6(d) show the results for effi-
ciency. Since our LTD and V-Net both adopt some learning
process, they are slightly slower than those simpler algo-
rithms. However, with the acceleration tricks such as BFS
split, our LTD runs faster than V-Net. Especially during rush
hours, when the bipartite expands quickly, the execution
time of our algorithm avoid a rapid growth. Our LTD is
faster than V-Net by up to 42.0%.

7 CONCLUSION

In this paper, we propose Learning To Dispatch(LTD), an
order dispatching algorithm which is both efficacious and
efficient. Modeling the order dispatching problem from the
view of multi-agent reinforcement learning, together with

classical combinatorial optimization algorithm Hungarian,
LTD shows a powerful evaluation on assignment candidates
and provide a dispatching decision which outperforms cur-
rent state-of-the-art order dispatching algorithms. Experi-
ments performed on industrial simulator with real data
show our LTD achieves 36.4% improvement on total utility
and 42.0% reduction on time consuming at most over the
state-of-the-art order dispatching algorithms.
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TABLE 2
Overall results on total utility U , respondence rate RR and completion rate CR of different algorithms. Larger numbers mean better performances.

City Method U (weekday) RR (weekday) CR (weekday) U (weekend) RR (weekend) CR (weekend)

A

GRE 2, 211, 524 +0.00000 +0.00000 2, 115, 692 +0.00000 +0.00000
HUN 2, 242, 993 +0.01390 +0.01192 2, 165, 011 +0.02130 +0.01939

NNP [6] 2, 265, 687 +0.01308 +0.03137 2, 143, 352 +0.00548 +0.02298
V-Net [11] 2, 372, 615 +0.05705 +0.05120 2, 282, 413 +0.06287 +0.05715
LTD (ours) 2,554,002 +0.11493 +0.11685 2,455,991 +0.12305 +0.12459

B

GRE 1, 356, 998 +0.00000 +0.00000 1, 442, 235 +0.00000 +0.00000
HUN 1, 373, 281 +0.01145 +0.00961 1, 452, 750 +0.00586 +0.00516

NNP [6] 1, 306, 734 −0.03295 −0.01441 1, 368, 986 −0.03813 −0.02124
V-Net [11] 1, 435, 992 +0.03247 +0.02865 1, 549, 928 +0.04069 +0.03388
LTD (ours) 1,486,576 +0.06150 +0.05788 1,625,191 +0.08239 +0.0721

C

GRE 758, 244 +0.00000 +0.00000 707, 528 +0.00000 +0.00000
HUN 771, 253 +0.01049 +0.00896 718, 777 +0.00875 +0.00756

NNP [6] 780, 672 +0.02210 +0.02598 706, 033 +0.00691 +0.01342
V-Net [11] 822, 712 +0.03413 +0.02833 753, 206 +0.02885 +0.02230
LTD (ours) 1,002,708 +0.15922 +0.13509 799,148 +0.05789 +0.05000
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