
A Data-driven Spatiotemporal Simulator for Reinforcement
Learning Methods

Dingyuan Shi
Beijing Advanced Innovation Center

for Future Blockchain and Privacy

Computing, Beihang University

chnsdy@buaa.edu.cn

Bingchen Song
Beijing Institute of Astronautical

Systems Engineering

songbch@foxmail.com

Yuanyuan Zhang
North China Institute of Computing

Technology

zyy-buaa@buaa.edu.cn

Haolong Yang
Beihang University

yanghaolong@buaa.edu.cn

Ke Xu
Beihang University

kexu@buaa.edu.cn

ABSTRACT

Spatiotemporal applications such as taxi order dispatching and

warehouse task scheduling depend critically on the algorithms for

operational e�ciency. However, the inherent dynamic nature of

these applications presents challenges in algorithm design. The

growth of mobility services has facilitated the collection of ex-

tensive spatiotemporal data, which in turn prompted algorithm

designers to use data-driven methods. Reinforcement learning (RL),

recognized for its strong performance and suitability for spatiotem-

poral contexts, has garnered considerable research interest. Despite

their potential, RL algorithms necessitate the use of a simulator for

both training and validation purposes. However, no speci�c simu-

lation system has been developed for spatiotemporal algorithm de-

sign. This vacancy hinders the progress of spatiotemporal algorithm

designers. In this demo, we build a system called Data-driven Spa-

tiotemporal Simulator (DSS), hoping to bring convenience for spa-

tiotemporal algorithm designers. DSS is adept at handling problems

related to taxi order dispatching and warehouse task scheduling

and possesses the versatility to be expanded for other user-de�ned

scenarios. The system includes visualization modules that o�er

insightful panels, alongside developer tools designed to stream-

line the development process. This enables designers to e�ciently

craft, evaluate, and re�ne their algorithms, potentially accelerating

innovation in spatiotemporal application development.

PVLDB Reference Format:

Dingyuan Shi, Bingchen Song, Yuanyuan Zhang, Haolong Yang, and Ke Xu.

A Data-driven Spatiotemporal Simulator for Reinforcement Learning

Methods. PVLDB, 17(12): 4257 - 4260, 2024.

doi:10.14778/3685800.3685849

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/dingyuan-shi/spatiotemporal-simulator-rl.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685849

1 INTRODUCTION

Recent decades have seen mobile services give rise to numerous

spatiotemporal applications, such as route planning[9], taxi dis-

patching [11], logistics [10], and so on. Algorithms determine the

operational e�ciency in these domains; for example, sophisticated

taxi dispatch algorithms enhance driver e�ciency [4], while ad-

vanced scheduling in smart warehouses maximizes throughput

by optimizing robot-assisted rack transportation [8]. The inher-

ently dynamic spatial and temporal aspects of these challenges

pose signi�cant di�culties for algorithm designers. The growing

body of spatiotemporal data has spurred a surge in reinforcement

learning (RL), which excels at navigating the complexities of agent-

environment interactions within such dynamic systems. RL’s ef-

�cacy in adapting to these complex spatiotemporal �uctuations

underscores its notable successes in diverse applications [4].

The design and validation of reinforcement learning (RL) algo-

rithms are heavily reliant on the use of simulators. Platforms like

Gym provide an extensive suite of integrated simulators for RL

development, including environments modeled after Atari games.

These simulation tools have been instrumental in driving forward

the evolution of reinforcement learning techniques. Despite these

advancements, there remains a conspicuous absence of specialized

systems tailored for the design of spatiotemporal algorithms. This

gap represents a signi�cant bottleneck impeding the advancement

of researchers and practitioners in the �eld of spatiotemporal algo-

rithm development.

In this demonstration, we introduce a system named Data-driven

Spatiotemporal Simulator (DSS), designed to facilitate the work of

spatiotemporal algorithm designers. DSS is composed of three prin-

cipal modules: the Environment module, the Visualization module,

and the Developer Tools module.

Environment module.Within this module, we have developed

two simulators: one for taxi order dispatching and another for

warehouse task scheduling. The taxi order dispatching simulator

replicates the dynamic interactions between drivers and incom-

ing orders, where it consistently scans for new orders using the

provided dataset, identi�es available drivers, and generates a bi-

partite graph that incorporates additional data about the drivers

and orders. Subsequently, the simulator invokes the dispatching

algorithm to determine an e�ective order allocation scheme and

executes the process of delivering passengers. This simulator also



accommodates driver repositioning strategies in line with prevalent

research [7, 12].

The warehouse task scheduling simulator, emulates the opera-

tional work�ow within a smart warehouse, where robots are uti-

lized to transport racks to pickers. It commences by constructing

the warehouse layout according to prede�ned con�guration pa-

rameters. Following that, it assigns picking tasks to each rack at

discrete time intervals and supplies the algorithm with pertinent in-

formation including robots’ positions, the queue lengths of pickers’

tasks, and the anticipated time for task completion. Based on this

input, the algorithm devises a plan for directing robots to e�ciently

distribute racks to pickers.

Both simulators are designed to operate in two modes: simulator-

centric and agent-centric. In simulator-centric mode, the simulation

is automatically propelled by an internal clock. Conversely, in agent-

centric mode, the simulation behaves akin to a Gym-style environ-

ment, where progression is controlled through the env.step()

method invocation. Our framework is intentionally crafted to be

user-friendly, allowing algorithm developers to seamlessly inte-

grate their own custom environments. This �exibility underscores

the framework’s capacity to accommodate a diverse range of spa-

tiotemporal application scenarios.

Visualization module. This module provides interactive panels

that supply algorithm designers with comprehensive insights into

the performance of their algorithms. These panels present a combi-

nation of simulation visuals and pertinent statistical data. For the

taxi order dispatching simulator, a central map display provides a

visualization of the distribution of orders and drivers, while side

panels o�er various performance metrics such as cumulative re-

wards, order response rates, and algorithm execution times, among

others. In the context of the warehouse task scheduling simulator,

the main panel depicts the entire operational �ow of the ware-

house, including an aisle heat map that highlights areas prone to

congestion. Complementing this, the side panels furnish additional

information like the ratio of working time and other relevant per-

formance indicators. Together, these visual and statistical tools

empower algorithm designers with both an intuitive understanding

and a granular analysis of their algorithms, laying the groundwork

for more informed and e�ective enhancements.

Developer Tool module. This module comes equipped with an

array of pre-packaged algorithms, extending beyond the realm of re-

inforcement learning (e.g., REINFORCE, Deep Q-Learning, Proximal

Policy Optimization) to include various combinatorial algorithms

commonly employed in spatiotemporal applications such as Kuhn-

Munkres matching algorithm. While this suite of built-in o�erings

is robust, algorithm designers also retain the �exibility to incorpo-

rate third-party libraries into their design process, ensuring they

can tailor solutions to their speci�c needs.

Through this demonstration, we hope to streamline the algo-

rithm design process, making it more straightforward to identify

and address potential issues and bottleneckswithin their algorithms,

which will expedite the iterative re�nement of their solutions, lead-

ing to faster advancements and optimizations.

2 SYSTEM DESIGN

2.1 System Overview

Spatiotemporal Data

Taxi Order
Dispatching

Environments

Warehouse
Task Scheduling

Gym-like interface
for user extension

Developer Tools

Combinatorial Algorithm

Reinforcement Learning

Visualization

Taxi 
Interface

Warehouse 
Interface

Figure 1: System Overview

DSS is a user-friendly, comprehensive framework tailored for the

creation and assessment of data-driven spatiotemporal algorithms.

It comprises three core modules: Environments (Env), Visualiza-

tion (Visual), and Developer Tool (DevTool), as illustrated in Fig. 1.

The Envmodule includes two classic spatiotemporal scenarios—taxi

order dispatching and warehouse task scheduling—to serve as foun-

dational environments. Visual o�ers panels that display simulation

processes and statistical analyses, enabling algorithm developers

to gain a better understanding of their work. DevTool equips users

with a variety of algorithms, both from combinatorial optimiza-

tion and reinforcement learning domains, to facilitate algorithm

development. Next, we will elaborate respectively as below.

2.2 Environments

We implement two simulation environments: taxi order dispatching

and warehouse task scheduling.

Taxi order dispatching. This simulator is designed for evaluating

order dispatching algorithms.

The simulator can be triggered independently. Upon activation,

the simulator initializes by loading data pertaining to taxis and or-

ders, with drivers and orders appearing at their designated times. In

bi-secundal intervals, it aggregates all available drivers and pending

orders, identifying potential matches within a set distance parame-

ter to construct a bipartite graph. This graph, coupled with statistics

such as order value, driver-to-order proximity, and destination data,

is provided to the implemented dispatch algorithm. The result is

an expected dispatch plan that informs the assignment of orders to

drivers. Engaged drivers then ful�ll their tasks, reverting to avail-

ability post-estimated arrival, while idle ones relocate randomly in

line with historical trends.

Additionally, the simulator incorporates a driver repositioning

feature which, at predetermined intervals (e.g.,, every �ve minutes),

presents idle drivers’ details and earnings to the algorithm for

strategizing positional adjustments. During repositioning, drivers

remain eligible for order allocations.

It can also be used like a Gym environment, the simulation en-

ables the order dispatching algorithm, cast as an agent, to guide

the process via env.step(Action). This function call yields a tu-

ple with observation (a comprehensive dictionary for dispatching

decisions), accumulated reward (total value of dispatched orders),

�nish status (boolean indicating completion), and customizable

user information.



Throughout the simulation, pertinent metrics such as algorithm

execution time, cumulative rewards, ratios of idle drivers, order

ful�llment rates, and spatial distributions are logged for analysis.

These insights are crucial for developers to re�ne their algorithms

and can be visually represented through the Visualization module

as detailed in Sec. 2.3.

Env Agent

Dispatch

Load Data

Dispatching 

Information

Dispatch

Result

Assign

Orders

Repositioning 

Information
Reposition

Repositioning

Result

Reposition

Drivers

(a) Environment-Centric

Agent Env

Load Data
Initialize

Assign Orders

Reposition Drivers

Dispatch/

Reposition

Step

Dispatching/

Repositioning

Observation

(b) Agent-Centric

Figure 2: Work�ows of two simulation modes.

Warehouse task scheduling. This simulator is designed for ware-

house task scheduling. In such smart warehouses, items are stored

on mobile racks that robots transport throughout the facility. When

an order arrives, a robot performs a multi-step task: it retrieves a

rack with the required item, delivers it to a picker, waits during the

item-picking process, and �nally returns the rack to its storage lo-

cation. The scheduling challenge comprises two key sub-problems:

task assignment [8] and collision-aware route planning [10]. The

former requires an algorithm to determine e�cient robot-to-rack

assignments, while the latter demands path-planning for robots

that concurrently avoid collisions.

Our simulator replicates the intricate operations of a smart ware-

house. Analogous to the taxi dispatching simulator, it o�ers two op-

erational modes: environment-centric, where simulations operate

autonomously, and agent-centric, mimicking a Gym environment

where actions are agent-driven. The distinct phases of both modes

are depicted in Fig. 2.

Metrics recorded during simulation include ratios of rack, picker,

and robot utilization times, alongside algorithm execution time.

These statistics aid in optimizing task e�ciency and are essential for

developers to understand algorithm performance within a dynamic

warehouse context.

2.3 Visualization

For the above two environments, we implemented two visualization

modules, respectively.

Visualization for Taxi. In this module, we provide visualizations

for many statistics which vary along with the simulation process. It

includes an interactive progress bar, enabling algorithm designers to

scrutinize speci�c moments within the simulation. The progress bar

allows users to pause, resume, adjust the replay speed and navigate

seamlessly through the simulation timeline in both directions.

Implementing bidirectional scrubbing on the progress bar is

technically challenging due to the need for instantaneous updates

to drivers’ states, as they may be engaged in time-spanning tasks

such as passenger delivery. So we need to quickly update all drivers’

states to respond user’s drag action. To achieve this, we build an

R-tree based index. Speci�cally, an order (denoted as ĥ) has a start

time ĥ.ĩ and a �nish time ĥ.Ĝ . When dragging the progress bar

to time Ī , we need to �nd orders whose time span can cover this

query time Ī (i.e., ĥ.ĩ ≤ Ī ≤ ĥ.Ĝ ). In other words, the order is being

served at time Ī . We put all start and end times of all orders in an

R-tree. e.g., for any order, we put its start and �nish time in an

R-tree using coordinates (ĥ.ĩ, ĥ .Ĝ ). For a query time Ī , we query

the R-tree using the box with diagonal coordinate pair (0, Ī), (Ī, Īģ),

where Īģ is the largest time on the progress bar. Orders falling in

this box satisfy ĥ.ĩ ≤ Ī ≤ ĥ.Ĝ . Utilizing the R-tree index, active

orders can be retrieved e�ciently in ċ (log(Ċ )) time, where Ċ is

the order numbers within one day.

Visualization for Warehouse. The warehouse visualization mod-

ule displays the task scheduling process. In the central panel, it

displays how the racks are being delivered between pickers and

storage areas. Please refer to Sec. 3 for a more detailed introduction.

2.4 Developer Tool

Our DevTool equips algorithmic designers with a comprehensive

suite of developer utilities, streamlining the design process by obvi-

ating the need for basic operator implementation and allowing for

an enhanced focus on problem-solving. The toolkit bifurcates into

two principal sub-modules: the Combinatorial Algorithms Library

(CombLib) and the Reinforcement Learning Library (RLLib).

CombLib encompasses essential matching algorithms such as

the Kuhn-Munkres Algorithm [1], along with graph planning al-

gorithms like Breadth-First Search and Depth-First Search. These

are critical for applications in spatial-temporal contexts, including

order dispatching and route planning in industries like ride-hailing.

Optimizing for performance, traditional algorithms are crafted in

C++ and interfaced with Python for user accessibility.

RLLib features an array of reinforcement learning strategies, in-

cluding REINFORCE [13], Deep Q-learning [3], Deep Deterministic

Policy Gradient [2], and Proximal Policy Optimization [6]. Addi-

tionally, it integrates the prioritized experience replay mechanism

[5] to enhance sampling e�ciency.

3 DEMONSTRATION SCENARIO

3.1 Taxi Order Dispatching Algorithm Analysis

After the algorithm design, we can launch the simulation process

either in environment-centric or agent-centric mode. Aster that,

the results will be stored under Āďď_ĀąĎ/ĭĥĨġĚğĨ . Subsequent to

simulation, the visualization module is activated, with the interface

depicted in Figure 3, comprising six distinct panels for comprehen-

sive analysis.

Panel A presents a geographic map with a heat map overlay that

delineates the distribution of orders and drivers. A toggle in the

lower-left corner permits the user to alternate between visualizing

idle drivers and incoming orders. Additionally, it is feasible to trace

the routes of active drivers, thus o�ering a spatially encompassing



A

B

C

D

E

F

Figure 3: Illustration for taxi order dispatching.

perspective on driver availability, engagement, and service requests.

Panel B integrates a dynamic scrollbar that portrays �uctuations in

driver and order counts over time, assisting the designer in compre-

hending temporal distributions. Buttons adjacent to this scrollbar

enable pausing and resuming the process, along with adjusting

simulation velocity up to quintuple the standard rate. Moreover,

as detailed in Section 2.3, the scrollbar facilitates temporal naviga-

tion by dragging. Panels C through F deliver exhaustive statistical

data, including cumulative rewards, response and rejection ratios,

execution times, and so on, to furnish algorithm designers with

multifaceted and informed insights into order dispatch algorithms.

These statistics are represented both graphically, with bars, and

quantitatively, via polylines, to enhance interpretability.

3.2 Warehouse Task Scheduling Algorithm

Analysis

A

B

E

F

C

D

Figure 4: Illustration for warehouse task dispatching.

Fig. 4 illustrates simulation process for warehouse, which is

composed of six panels.

Panel A graphically displays the operational state, where robots

transport racks to pickers, o�ering algorithm designers an immedi-

ate visual comprehension of their algorithm’s functionality. Panel

B projects a heat map of warehouse tra�c, with warmer hues rep-

resenting higher visitation frequencies. The visualization suggests

that the heated horizontal aisles, which traverse the entire ware-

house, are prime candidates for expansion to alleviate congestion

and enhance throughput. Alternatively, algorithmic adjustments

could be made to distribute usage more evenly across these aisles.

In Panel C, the temporal segmentation of robot activity is depicted,

categorizing time into: (i) idle periods, (ii) locomotion, (iii) transit

with rack-loaded, and (iv) queuing while laden with racks for pro-

cessing. This granular breakdown assists designers in pinpointing

e�ciency bottlenecks and optimizing robot scheduling. Panel E

delves into the temporal dynamics associated with rack movement,

particularly focusing on the top 10 most frequently moved racks. It

highlights the distribution of time spent, facilitating the identi�ca-

tion of potential congestion points. For instance, excessive queuing

times suggest that algorithms should address both path selection

and task timing to expedite operations.

Panels D and F display the processing rates for pickers and work-

ing rates for robots, respectively, indicators of warehouse resource

utilization. Suboptimal ratios may signal opportunities for algorith-

mic re�nement to maximize resource deployment. Moreover, if low

ratios persist despite operational e�ciency, it may indicate that the

quantities of robots or pickers exceed current requirements.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their sugges-

tions. This work was partially supported by National Key Research

andDevelopment Program of China under Grant No. 2023YFF0725103,

National Science Foundation of China (NSFC) (Grant Nos. U21A20516,

62336003) and Beijing Natural Science Foundation (Z230001), the Ba-

sic Research Funding in Beihang University No.YWF-22-L-531, and

Didi Collaborative Research Program NO2231122-00047. Yuanyuan

Zhang is the corresponding author in this paper.

REFERENCES
[1] Harold W Kuhn. 1955. The Hungarian method for the assignment problem.

Naval research logistics quarterly 2, 1-2 (1955), 83–97.
[2] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In ICLR.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013).

[4] Zhiwei Tony Qin, Hongtu Zhu, and Jieping Ye. 2022. Reinforcement learning
for ridesharing: An extended survey. Transportation Research Part C: Emerging
Technologies 144 (2022), 103852.

[5] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In ICLR.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

[7] Dingyuan Shi, Yongxin Tong, Zimu Zhou, Bingchen Song, Weifeng Lv, and Qiang
Yang. 2021. Learning to Assign: Towards Fair Task Assignment in Large-Scale
Ride Hailing. In KDD. ACM, 3549–3557.

[8] Dingyuan Shi, Yongxin Tong, Zimu Zhou, Ke Xu, Wenzhe Tan, and Hongbo Li.
2022. Adaptive Task Planning for Large-Scale Robotized Warehouses. In ICDE.
IEEE, 3327–3339.

[9] Dingyuan Shi, Yongxin Tong, Zimu Zhou, Ke Xu, Zheng Wang, and Jieping Ye.
2024. Graph-Constrained Di�usion for End-to-end Path Planning. In ICLR.

[10] Dingyuan Shi, Nan Zhou, Yongxin Tong, Zimu Zhou, Yi Xu, and Ke Xu. 2023.
Collision-Aware Route Planning in Warehouses Made E�cient: A Strip-based
Framework. In ICDE. IEEE, 869–881.

[11] Xiaocheng Tang, Fan Zhang, Zhiwei (Tony) Qin, Yansheng Wang, Dingyuan Shi,
Bingchen Song, Yongxin Tong, Hongtu Zhu, and Jieping Ye. 2021. Value Function
is All You Need: A Uni�ed Learning Framework for Ride Hailing Platforms. In
KDD. ACM, 3605–3615.

[12] Yongxin Tong, Dingyuan Shi, Yi Xu, Weifeng Lv, Zhiwei Qin, and Xiaocheng
Tang. 2023. Combinatorial OptimizationMeets Reinforcement Learning: E�ective
Taxi Order Dispatching at Large-Scale. TKDE 35, 10 (2023), 9812–9823.

[13] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Mach. Learn. 8 (1992), 229–256.


	Abstract
	1 Introduction
	2 System Design
	2.1 System Overview
	2.2 Environments
	2.3 Visualization
	2.4 Developer Tool

	3 Demonstration Scenario
	3.1 Taxi Order Dispatching Algorithm Analysis
	3.2 Warehouse Task Scheduling Algorithm Analysis

	Acknowledgments
	References

