
Learning to Assign: Towards Fair Task Assignment in
Large-Scale Ride Hailing

Dingyuan Shi

SKLSDE & BDBC, Beihang University

chnsdy@buaa.edu.cn

Yongxin Tong

SKLSDE & BDBC, Beihang University

yxtong@buaa.edu.cn

Zimu Zhou

Singapore Management University

zimuzhou@smu.edu.sg

Bingchen Song

SKLSDE & BDBC, Beihang University

songbch@buaa.edu.cn

Weifeng Lv

SKLSDE & BDBC, Beihang University

lwf@buaa.edu.cn

Qiang Yang

The Hong Kong University of Science

and Technology

AI Group, WeBank Co., Ltd

qyang@cse.ust.hk

ABSTRACT
Ride hailing is a widespread shared mobility application where the

central issue is to assign taxi requests to drivers with various objec-

tives. Despite extensive research on task assignment in ride hailing,

the fairness of earnings among drivers is largely neglected. Pioneer

studies on fair task assignment in ride hailing are ineffective and

inefficient due to their myopic optimization perspective and time-

consuming assignment techniques. In this work, we propose LAF,

an effective and efficient task assignment scheme that optimizes

both utility and fairness. We adopt reinforcement learning to make

assignments in a holistic manner and propose a set of acceleration

techniques to enable fast fair assignment on large-scale data. Exper-

iments show that LAF outperforms the state-of-the-arts by up to

86.7%, 29.1%, 797% on fairness, utility and efficiency, respectively.

CCS CONCEPTS
• Applied computing→ Economics.

KEYWORDS
Fairness; Ride Hailing; Reinforcement Learning

ACM Reference Format:
Dingyuan Shi, Yongxin Tong, Zimu Zhou, Bingchen Song, Weifeng Lv,

and Qiang Yang. 2021. Learning to Assign: Towards Fair Task Assignment in

Large-Scale Ride Hailing. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’21), August 14–18, 2021,
Virtual Event, Singapore. ACM, New York, NY, USA, 9 pages. https://doi.org/

10.1145/1122445.1122456

1 INTRODUCTION
Ride hailing is an emerging shared mobility service that signifi-

cantly increases the urban traffic capacity. For example, a major

ride hailing platform in China has reached over 50 million daily

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/1122445.1122456

trips in 2020
1
. A ride hailing service consists of drivers, passengers,

and the platform, where the platform matches taxi requests sub-

mitted by passengers to drivers. Matching between taxi requests

and drivers, a.k.a. task assignment, is the core issue in ride hailing

research [19, 21, 23, 24, 26].

Existing studies mainly optimize task assignment from the per-

spective of the platform or the passengers, whereas few have investi-

gated the problem from the drivers’ perspective. For example, many

assignment algorithms have been designed to maximize the utility

[19, 23, 26] or minimize the travel cost [21] or the passengers’ wait-

ing time [24]. Only very recently did pioneer work [13, 17] explore

objectives such as balancing earnings among drivers during task

assignment. We argue that blindly assigning drivers to tasks that

maximizes utility may impair the drivers’ experience in terms of

notable earning gaps among drivers[2]. Fig. 1 simulates the tra-

jectories of four drivers via an assignment algorithm that merely

maximizes utility. Driver 1 is first assigned a request which ends

in the remote area. After completing this order, it is difficult for

him/her to get back to the busy area, leading to low hourly earn-

ings. In contrast, driver 3 is assigned by chance to another request

which ends in the busy area so that he/she can have higher hourly

earnings. Driver 2 stays in the busy area but is rarely assigned a

request. The long idle time also leads to low hourly earnings. In

comparison, driver 4 happened to be assigned many requests and

the short idle time contributes to a higher hourly earning. Such

gaps in hourly earnings among drivers (driver 1, 2 vs. driver 3, 4

in this example) may discourage drivers and result in unfair task
assignment.

Although fairness in task assignment has been extensively re-

searched in application domains such as load balancing in cloud

computing [4, 6, 10, 12] and kidney exchange [7, 15], fair task as-

signment in ride hailing faces unique challenges. (i) online setting:
ride hailing is a two-sided online assignment scenario, with high

spatiotemporal dependencies and variations [20]. (ii) bi-objective
optimization: an ideal assignment algorithm for ride hailing should

optimize both the utility and the fairness among drivers, under

various practical constraints. (iii) high efficiency requirement: real-

world ride hailing platforms require fast assignments on data at

urban-scale. The state-of-the-art fair assignment algorithms for

ride hailing [13, 17] fail to address all these challenges. Firstly, these

1
https://www.didiglobal.com/news/newsDetail?id=955&type=news

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

2021/1/11 route.html

file:///Users/sdy/Projects/KDD21/case_study/route.html 1/1
© Mapbox © OpenStreetMap

Driver 1

Driver 2

Driver 3

Driver 4

Figure 1: Simulated driver trajectories. A solid (dash) line
means the driver is serving a request (idle).

solutions are myopic. That is, they ignore the impact of the current

assignment to future ones, which largely shrinks the optimization

space and thus notably reduces the achievable utility and fairness.

Secondly, they either rely on linear programming [17] or require

multiple rounds of re-assignments [13], making them inefficient

for real-time responses over large-scale data.

In this paper, we propose Learning to Assign with Fairness (LAF),

an effective and efficient task assignment scheme that optimizes

both utility (measured by expected total earnings of all drivers) and

fairness (measured by temporal earnings fairness among drivers) in

ride hailing. LAF explicitly accounts for the dependencies among

assignments by learning future-aware assigning strategies via rein-

forcement learning. Such learned assigning strategies can optimize

utility and fairness in a holistic manner. For efficient assignment,

LAF embeds fairness and utility optimization into the same aug-

mentation operation, and takes advantages of the sparsity in the

bipartite graph for further acceleration. It is also worth mentioning

that we propose a weighted amortized fairness metric rather than

the conventional unweighted one [17] to characterize the drivers’

earnings fairness at a finer time granularity e.g., hourly earnings

fairness.

Evaluations show an improvement of 45.7%~86.7% and 7.7%~29.1%

on fairness and utility, respectively, over the state-of-the-arts [13,

17]. Our LAF also runs up to 700× faster than [13, 17]. The main

contributions of this work are summarized as follows.

• To the best of our knowledge, this is the first work that

explicitly considers the dependency between current and

future assignments to improve the performance of fair task

assignment in ride hailing.

• We propose LAF, a novel reinforcement learning based fair

task assignment scheme that is adaptive to highly dynamic

traffic, aligned with practical settings, and fit for large-scale

ride hailing applications.

• Extensive evaluations show our LAF outperforms the state-

of-the-arts [13, 17] by a large margin in terms of fairness,

utility, and efficiency.

In the rest of this paper, we review related work in Sec. 2, introduce

our problem in Sec. 3 and explain our methods in Sec. 4. We present

the evaluations in Sec. 5 and conclude in Sec. 6.

2 RELATEDWORK
Our work is mainly related to two threads of research: task assign-
ment in ride hailing and fairness in assignment problems.

Task Assignment in Ride Hailing. Due to its fast expansion in

metropolis, ride hailing has attracted extensive research interests

[1, 21, 23, 24, 26], where a core topic is to assign taxi requests

to drivers for certain optimization objects. Common goals in ride

hailing include maximizing profit [23, 26], minimizing travel cost

[21, 22], minimizing passengers’ waiting time [1, 24], and so on.

Many task assignment algorithms focus on providing theoretical

performance guarantees [24]. However, they often make assump-

tions such as independence among drivers and assignments, which

often prohibits them from delivering the expected performance

in real-world applications. A promising alternative is to automati-

cally learn to optimize the assignments from historical data with

few assumptions. For example, some recent work [25] achieves the

state-of-the-art performance by using reinforcement learning to

optimize utility. In this work, we also target at practical task assign-

ment algorithms suited for large-scale applications. Our method

is inspired by [25] but we are the first to design a reinforcement

learning based solution that optimizes both utility and fairness.

Fairness in Assignment Problems. Fairness has long been an

essential factor of assignment problems in various applications [9,

14]. Research on fair assignment can be divided into two categories

depending on whether the tasks and workers are static or dynamic.

In static fair task assignment, both workers and tasks are static,

which is common in crowdsourcing [3, 11] and kidney exchange

[7, 15]. Dynamic fair assignment is more difficult, where one or

both side can be dynamic. This setting is fit for applications such

as cloud computing [12] and web request allocation [4], where the

objective is to balance the load of servers. Some work [5] studied

fair assignment in spatial crowdsourcing, where fairness means

workers serve the same number or value of tasks. This fairness goal

is unfit for ride hailing, since different taxi drivers have different

working times.

Fairness in ride hailing belongs to dynamic fair assignment prob-

lems. Of particular interest is the fairness of driver earnings [13, 17].

Fair assignment in ride hailing is challenging due to the strong

spatiotemporal dynamics of tasks and workers. In this work, we

propose a new driver earnings fairness metrics that accounts for

such spatiotemporal dynamics and devise efficient and effective

assignment algorithms that notably outperform the state-of-the-art

fair assignment algorithms [13, 17].

3 PROBLEM STATEMENT
As with previous studies [13, 17], we consider batched assignments

of drivers to requests. Let𝑊 and𝑅 be the sets of drivers and requests

in the time horizon of interest 𝑇 . In each batch 𝑡 , assignments

between the requests 𝑅 (𝑡) and drivers𝑊 (𝑡) available in this batch

are formulated as a bipartite matching problem to optimize both

utility and fairness. The batched setting is widely adopted in real-

world large-scale ride hailing applications [19, 25, 26].

Definition 1 (Reqest). A taxi request 𝑟 ∈ 𝑅 is denoted as a
tuple < 𝑜𝑟 , 𝑑𝑟 , 𝑝𝑟 , 𝜏𝑟 >, where 𝑜𝑟 , 𝑑𝑟 , 𝑝𝑟 and 𝜏𝑟 represent the origin,
destination, price and duration of 𝑟 .

In real-world ride hailing applications, the origin and the des-

tination of a request are input by the passengers and uploaded

to the platform. We make no assumptions on the origin and the

destination of a request. Upon receiving the request, the platform

determines the price and estimates the duration for the request

based on the trip distance and other factors e.g., traffic congestion.

For simplicity, we assume the duration is a multiple of 𝑡 . Note that

the ratio 𝑝𝑟 /𝜏𝑟 decides the per-batch earnings of a driver if the

request is assigned to him/her, as we will explain next.

Definition 2 (Driver). A taxi driver 𝑤 ∈ 𝑊 is denoted as a
tuple < 𝑙

(𝑡)
𝑤 , 𝑢

(𝑡)
𝑤 , 𝑎

(𝑡)
𝑤 >, where 𝑙 (𝑡)𝑤 , 𝑢 (𝑡)𝑤 , and 𝑎 (𝑡)𝑤 are 𝑤 ’s current

location, earnings and status in batch 𝑡 .

The status 𝑎
(𝑡)
𝑤 is a binary indicator of 0 or 1. 𝑎

(𝑡)
𝑤 = 0 if the driver

is inactive, i.e., not on the platform. 𝑎
(𝑡)
𝑤 = 1 if the driver is active,

which can be either idle or serving a request. We assume 𝑎
(𝑡)
𝑤 stays

the same within a batch since the batch size is small in practice (e.g.,
2 seconds [26]). The earnings 𝑢

(𝑡)
𝑤 = 0 if the driver is idle, whereas

𝑢
(𝑡)
𝑤 = 𝑝𝑟 /𝜏𝑟 if he/she is serving request 𝑟 in batch 𝑡 . Unlike prior

studies [21, 24] that assume independent driver distributions across
batches, we consider a more realistic dependency driver setting.

That is, the driver distribution in future batches is influenced by

that of the current batch as well as the current assignment. The

dependency driver setting accounts for the temporal dependency of
assignments across batches.

Definition 3 (Bipartite Graph). We use a bipartite graph
𝐺 (𝑡) =< 𝑅 (𝑡) ,𝑊 (𝑡) , 𝐸 (𝑡) > to denote the candidate assignments
between drivers and requests in bath 𝑡 , where node sets 𝑅 (𝑡) and𝑊 (𝑡)

are the requests to be assigned and the available drivers in 𝑡 , respec-
tively. There is an edge (𝑟,𝑤) ∈ 𝐸 (𝑡) with a weight 𝜃𝑟,𝑤 if request 𝑟
can be assigned to driver𝑤 .

In line with prior research on task assignment in ride hailing

[26], an edge only exists if the request-driver distance is within a

threshold to avoid long waiting time of passengers. We also assign

a rejection rate 𝜆𝑟,𝑤 to each edge (𝑟,𝑤) to account for other user
experience related factors. The distance threshold and the rejection

rates are set by the platform. The weight 𝜃𝑟,𝑤 is initially set as the

price 𝑝𝑟 of request 𝑟 .

Our objective is to find for each batch 𝑡 ∈ {1, 2, · · · ,𝑇 } a match-

ing𝑀 (𝑡) on candidate assignments 𝐺 (𝑡) that optimize total utility
and temporal earnings fairness defined as below.

Definition 4 (Total Utility). Given the reusable set of drivers
𝑊 and the dynamically appeared set of requests 𝑅, the total utility is
the expected accumulated earnings across all drivers till batch 𝑇 , i.e.,

𝑈 =
∑
𝑤∈𝑊

E

[∑
𝑡 ∈𝑇

𝑢
(𝑡)
𝑤

]
(1)

where E [.] takes the expectation. The expected accumulative

earnings E
[∑

𝑡 ∈𝑇 𝑢
(𝑡)
𝑤

]
of𝑤 are decided by the matching results:

E

[∑
𝑡 ∈𝑇

𝑢
(𝑡)
𝑤

]
=
∑
𝑡 ∈𝑇

∑
(𝑟,𝑤) ∈𝑀 (𝑡)

(1 − 𝜆𝑤,𝑟) · 𝑝𝑟 (2)

We maximize𝑈 to optimize the overall earnings of drivers.

Table 1: Summary of important notations.

Notation Description

𝑇
time horizon of interest i.e., # batches,
at the scale of a day

𝑡 a batch, duration of a batch at the scale of seconds

𝑊,𝑅 set of all drivers and requests

𝑊 (𝑡) , 𝑅 (𝑡) set of available drivers and requests in batch 𝑡

𝑙
(𝑡)
𝑤 , 𝑢

(𝑡)
𝑤 , 𝑎

(𝑡)
𝑤 location, earnings and status of𝑤 in batch 𝑡

𝑜𝑟 , 𝑑𝑟 , 𝑝𝑟 , 𝜏𝑟 origin, destination, price, and duration of request 𝑟

𝐺 (𝑡) bipartite graph of candidate assignments in batch 𝑡

𝐸 (𝑡) candidate assignments in batch 𝑡

𝑀 (𝑡) actual assignments in batch 𝑡

𝜆𝑤,𝑟 rejection rate of edge (𝑤, 𝑟), i.e., assigning 𝑟 to𝑤
𝜃𝑤,𝑟 weight of edge (𝑤, 𝑟)
𝑈 total utility

𝐹𝑤 weighted amortized fairness

𝜉 (𝑡) weight for active time in 𝐹𝑤
𝐹 temporal earnings fairness

𝑉 value function, 𝑉 (𝑙) denotes the value in location 𝑙

𝐻, 𝑆 hexagon and square value functions

𝒮 guidance scheme for idle drivers

We adopt the notion of amortized fairness [17] to character-

ize the temporal earnings fairness among drivers. The amortized

fairness, which is the accumulative earnings over the active time

(∑𝑡 ∈𝑇 𝑢
(𝑡)
𝑤)/(

∑
𝑡 ∈𝑇 𝑎

(𝑡)
𝑤), should be equal among drivers. However,

we argue that the naive amortized fairness can be unfair to drivers

who have different working hour preferences or schedules (e.g.,
daytime, night hours, or rush hours). Since the taxi demand in dif-

ferent time of the day varies, the potential earnings also differs.

Therefore, enforcing equal earnings proportional to the active time

leads to earnings inequality between drivers e.g., who mainly work

in the day and those who mostly work at night. As a remedy, we

propose to use the weighted amortized fairness defined as below.

Definition 5 (Weighted Amortized Fairness). The weighted
amortized fairness of driver𝑤 is his/her accumulative earnings over
his/her weighted active time:

𝐹𝑤 =

∑
𝑡 ∈𝑇 𝑢

(𝑡)
𝑤 /𝜉 (𝑡)∑

𝑡 ∈𝑇 𝑎
(𝑡)
𝑤

(3)

where 𝜉 (𝑡) is the weight associated to the earnings to normalize

the variations in potential earnings across different times of the

day. Typically, the time horizon of interest 𝑇 is a day, a batch 𝑡 is

at the scale of seconds e.g., 2 seconds, and the temporal weight 𝜉 (𝑡)

varies on an hourly basis. This is because reports show that taxi

drivers concern about hourly and daily wages for decision-makings

[16] and research have demonstrated dramatic fluctuations in taxi

demand by hours [20]. For simplicity, we use the median of driver

earnings within the current hour containing batch 𝑡 as 𝜉 (𝑡) .
To quantify the fairness distribution among all drivers, we de-

fine the temporal earnings fairness based on the weight amortized

fairness as follows.

Shared Value
Functions

Multi-Agent
System

BFS Split&
Special Judge

Fair
Augmentation

Guidance
Scheme

𝐻!(#)

𝑆!(#)

(1 − 𝜆) # Δ"

∆#

∆$

𝑙%
('), 𝑢%

(') , 𝑎%
(')

𝑙)
('), 𝑢)

(') , 𝑎)
(')

𝑙*
('), 𝑢*

(') , 𝑎*
(')

…
…

𝑉!(𝑙))

1 Evaluating 2 Assigning 4 Learning

LEARNING-BASED RE-WEIGHTING

EFFICIENT BI-OBJECT ASSIGNMENT

3 Guiding

Figure 2:Workflowof LAF. In each batch, the learning-based
re-weighting module first refines the edge weight of the
given bipartite graph considering temporal dependencies
across assignments. Then the efficient bi-objective assign-
mentmodule finds an assignment via fair augmentation and
other acceleration techniques. Lastly, the learning-based re-
weighting module updates the weights based on the assign-
ment result and guides idle drivers if necessary.

Definition 6 (Temporal earnings Fairness). Given the reusable
set of drivers𝑊 and the dynamically appeared set of requests 𝑅, the
temporal earnings fairness among𝑊 is measured by an entropy vari-
ant of weighted amortized fairness:

𝐹 = −
∑
𝑤∈𝑊

log

(
𝐹𝑤

max𝑤′∈𝑊 𝐹𝑤′

)
(4)

A large 𝐹 indicates dispersed weighted amortized fairness across

drivers, i.e.,, high earnings inequality. Thus we aim to minimize 𝐹 .

Table 1 summarizes the frequently used notations in this paper.

Remarks. It is challenging to optimize the total utility 𝑈 and the

temporal earnings fairness 𝐹 analytically for large-scale ride hailing

applications. Prior solutions [13, 17] have the following limitations.

• Ignorance of the temporal dependency between current and
future assignments. Many existing proposals oversimplified

the problem setting by assuming independent arrival of new

drivers in the time horizon. However, the drivers’ availabil-

ity and locations in the next batch are influenced by the

assignments in current batch. Such dependency affects the

optimization of utility and fairness, particularly at short-

term scale where taxi demand and supply may fluctuate

dramatically in space and time.

• Inefficient for large-scale applications. Previous research re-

sorts to linear programming to solve the bi-objective match-

ing problem, which can be slow to achieve real-time response

to large-scale ride hailing.

4 METHOD
In this section, we introduce Learning to Assignwith Fairness (LAF),

a novel solution to optimize both the total utility and temporal earn-

ings fairness for large-scale ride hailing applications. LAF adopts

a reinforcement learning based re-weighting scheme to explicitly

account for the temporal dependency between current and future

assignments during matching. The scheme is implemented in an

online manner to adapt to the dynamics of taxi supply and demand.

LAF also incorporates a set of pruning and acceleration strategies

for efficient bi-objective (utility and fairness) assignment on large-

scale data. We present an overview of LAF in Sec. 4.1 and elaborates

on the details in Sec. 4.2 and Sec. 4.3.

4.1 LAF Overview
LAF consists of a learning-based re-weightingmodule and an efficient
bi-objective assignment module (Fig. 2).

• The learning-based re-weighting module (Sec. 4.2) refines the

edge weights in the bipartite graph, which are initialized

as trip prices (see Definition 3), to reflect the impact of the
current assignment on future utility and fairness. The weight
refinement policies are acquired via online reinforcement
learning and we also design a driver guidance scheme to

mitigate the cold start problem of online learning.

• The efficient bi-objective assignment module (Sec. 4.3) assigns

taxi requests to drivers considering both utility and fairness.

Its core is the fair augmentation algorithm, which applies the

Kuhn–Munkres algorithm [8] to maximize utility and checks

earnings rates across drivers to ensure fairness. We also

design techniques (BFS Split and Special Judge) to accelerate

the assignment on large-scale data taking advantage of the

sparsity in the bipartite graph.

In each batch, LAF operates in four stages: evaluating, assign-

ing, guiding and learning (Fig. 2). Each batch starts with evaluat-

ing. Given a bipartite graph with edge weights initialized by the

trip price, the learning-based re-weighting module will update the

weights such that the weights reflect both the immediate and fu-

ture earnings. Then in the assigning stage, the efficient bi-objective

assignment module computes a new matching on the refined bipar-

tite graph, considering both the utility and fairness. Since (i) the
updated weights account for the impact of the current assignments

on future ones, and (ii) the assignment algorithm is bi-objective,

the resulting assignments optimize both utility and fairness in a

holistic manner (i.e., considering temporal dependencies among

assignments across batches). The last are the learning and guiding

stages. The re-weighting module will learn from the matching re-

sults to improve its re-weighting policy for the next batch and guide

idle drivers to busy area to avoid the cold start of online learning.

4.2 Learning-based Re-weighting
This subsection explains how to apply online reinforcement learn-

ing to model the impact of current assignments on future utility

and fairness. We start with the basic formulation (Sec. 4.2.1), discuss

practical issues (Sec. 4.2.2, Sec. 4.2.3, Sec. 4.2.4), and finally present

the complete design (Sec. 4.2.5).

4.2.1 Online Reinforcement Learning based Formulation. Reinforce-
ment learning [18] is a learning method by agents interacting with

the environment over time. The agent takes an action each step and

gets rewards from the environment. Based on the rewards, the agent

updates its value function𝑉 𝜋
𝑤 which maps from the agent𝑤 ’s state

to the expected accumulated reward if the agent takes action follow-

ing policy 𝜋 . The optimal policy can be learned through evaluating

the rewards obtained through interactions with the environment.

In our context, each active driver is considered as an agent. In

each batch, an agent (i.e., driver) can take two actions, taking a taxi

request 𝑟 or remaining idle and the reward is 𝑝𝑟 or 0, respectively.

The state of a driver𝑤 is represented by his/her location 𝑙
(𝑡)
𝑤 and

batch 𝑡 as (𝑙 (𝑡)𝑤 , 𝑡). We are interested in the value function𝑉 𝜋
𝑤 (𝑙
(𝑡)
𝑤 , 𝑡)

of driver 𝑤 for his/her state (𝑙 (𝑡)𝑤 , 𝑡) following the policy 𝜋 that

optimizes the total utility and temporal earnings fairness. Note that

it is challenging to explicitly derive the policy 𝜋 due to the fairness

goal and the potential action conflicts among drivers. Hence we use

value-iteration to learn the value function. That is, we iteratively

update the value function from the rewards without considering

policy as follows.

𝑉 𝜋
𝑤 (𝑙
(𝑡)
𝑤 , 𝑡) ← 𝑉 𝜋

𝑤 (𝑙
(𝑡)
𝑤 , 𝑡) + 𝛽 · Δ𝑤 (∀𝑤 ∈𝑊) (5)

where 𝛽 is learning ratio and Δ𝑤 is decided by:

Δ𝑤 =

{
𝑝𝑟 +𝑉 𝜋

𝑤 (𝑑𝑟 , 𝑡 + 𝜏𝑟) −𝑉 𝜋
𝑤 (𝑙𝑤 , 𝑡) 𝑖 𝑓 𝑤 𝑔𝑒𝑡𝑠 𝑟

0 𝑖 𝑓 𝑤 𝑖𝑠 𝑖𝑑𝑙𝑒
(6)

Since we do not aim for an explicit policy 𝜋 , we omit the superscript

𝜋 in the rest of paper for brevity. Also note that we adopt an online

reinforcement learning model to be adaptive to the short-term

dynamics in urban traffic. Combining traffic pattern prediction

with reinforcement learning is out of the scope of this paper.

4.2.2 Reducing Numbers of States. The formulation above has too

many states for an agent to explore, which prohibits effective rein-

forcement learning. Simple state discretization is insufficient. Note

that the total number of states is the number of spacial states 𝑁𝑆

times the number of temporal states 𝑁𝑇 . Consider a city partitioned

into tiles with a square of 1 𝑘𝑚2
and the time horizon of one day

into segments with span of 20 min (average trip duration), then

𝑁𝑆 and 𝑁𝑇 will be about 8, 000 and 72, respectively, resulting in

over 500, 000 states in total. This is beyond an agent’s exploration

in a day of 25, 200 actions, estimated by assuming active time of 14

hours (permitted maximum working hours) and exploring a state

every 2 seconds (a batch). The actual exploration number is much

lower if excluding the time when serving requests.

We reduce the number of states by two methods.

• Spatial value function approximation. We approximate the

original value function in the spatiotemporal state space into

the spatial state space only, i.e., 𝑉𝑤 (𝑑𝑟 , 𝑡 + 𝜏𝑟) = 𝑉𝑤 (𝑑𝑟 , 𝑡).
This is reasonable because most requests last less than half

an hour and the variation of value functions can be ignored.

Accordingly, the update equation can be rewritten as:

Δ𝑤 =

{
𝑝𝑟 + 𝛾𝜏𝑟𝑉𝑤 (𝑑𝑟) −𝑉𝑤 (𝑙𝑤) 𝑖 𝑓 𝑤 𝑔𝑒𝑡𝑠 𝑟

0 𝑖 𝑓 𝑤 𝑖𝑠 𝑖𝑑𝑙𝑒
(7)

The discount factor 𝛾 corrects the approximation inaccuracy

of long-duration requests.

• Information sharing among agents. We use a shared value

function combining all agents’ value functions. This is rea-

sonable because drivers in similar spatiotemporal state should

have a similar evaluation to the location. Accordingly, the

update equation is further reduced into:

𝑉 (𝑙) ← 𝑉 (𝑙) + 𝛽 ′ ·
∑

𝑤:𝑙
(𝑡)
𝑤 ∈𝑙

Δ𝑤 (8)

© Mapbox © OpenStreetMap

(a)

© Mapbox © OpenStreetMap

(b)

Figure 3: Hexagon and square value functions 𝐻 and 𝑆 at
17:00. Warmer colors indicate higher values.

where 𝛽 ′ is the normalized learning ratio and 𝑙 represents

all possible locations of value functions.

The first method reduces the total number of states from 𝑁𝑇 · 𝑁𝑆

to 𝑁𝑆 . The second method makes all drivers explore on the same

value function to extend the exploration. Since the number drivers

can be on the order of 10, 000 in cities, each state will be explored a

hundred times on average, which is enough for convergence.

4.2.3 Adaptive to Different Urban Layouts. In practical ride hailing

applications, the space is usually discretized [19, 25], which restricts

how the value function can vary on the urban layouts. To eliminate

such restrictions, we smooth the value function from different

directions, which involves two steps: (i) discretize the locations

into a two-layer structure and (ii) smooth different layer values.

In LAF, the two layers are the hexagon layer and the square layer
where the city is split into hexagons and squares, respectively. The

two shapes provide different specialities for smoothing. Hexagons

have more directions and smoothing via these directions benefit

irregular urban layouts. As for squares, the boundaries are parallel

to longitude and latitude, which are fit for regular area. As shown

in Fig. 3, the hexagon layer shows a radial pattern align with the

shape of trunk roads (Fig. 3(a)), while the square layer shows a

regional pattern indicating some busy areas (Fig. 3(b)).

Finally, we smooth the value function as follows:

𝑉 (𝑙) = 1

|𝐷𝐼𝑅𝐻 | + |𝐷𝐼𝑅𝑆 |
(

∑
𝑥 ∈𝐷𝐼𝑅𝐻

𝐻 (𝑙 + 𝑥) +
∑

𝑥 ∈𝐷𝐼𝑅𝑆

𝑆 (𝑙 + 𝑥)) (9)

where 𝐻 and 𝑆 are the value functions for hexagons and squares,

which are updated by Eq. (8).𝐷𝐼𝑅𝐻 and𝐷𝐼𝑅𝑆 specify the smoothing

directed offsets for the two layers.

4.2.4 Avoiding Cold Start in Online Learning. Due to the online

learningmanner, the value function is initialized as zero, causing the

value evaluation to degrade to the initial weight (trip price). Such

cold starts prohibit the assignments in initial batches to be future-

aware. In response, we propose to guide drivers to appropriate areas

in advance. The appropriate areas are decided by both the distance

and increment of value function (i.e., line 4 in Algorithm 3). For

simplicity, we use hexagon areas (𝐴ℎ) in value function 𝐻 as the

candidate guiding destinations.

Algorithm 1: Evaluating stage of re-weighting module.

Input: The bipartite graph 𝐺 (𝑡) =<𝑊 (𝑡) , 𝑅 (𝑡) , 𝐸 (𝑡) >, the
rejection probability 𝜆, hexagon value function 𝐻 ,

square value function 𝑆

Output: The bipartite graph after re-weighting

𝐺 (𝑡) =<𝑊 (𝑡) , 𝑅 (𝑡) , 𝐸 ′(𝑡) >

1 𝐸 ′(𝑡) ← ∅
2 for𝑤, 𝑟, 𝜃𝑤,𝑟 ∈ 𝐸 (𝑡) do
3 calculate 𝑉 (𝑙𝑤) and 𝑉 (𝑑𝑟) by Eq. (9)

4 𝜃𝑤,𝑟 ← (1 − 𝜆𝑤,𝑟) · (𝑝𝑟 + 𝛾𝜏𝑟𝑉 (𝑑𝑟) −𝑉 (𝑙𝑤))
5 𝐸 ′(𝑡) ← 𝐸 ′(𝑡)

⋃ (𝑤, 𝑟, 𝜃𝑤,𝑟)
6 end
7 return 𝐸 ′(𝑡)

Algorithm 2: Learning stage of re-weighting module.

Input: Assignment results𝑀 (𝑡) , drivers𝑊 (𝑡) , hexagon
value function 𝐻 , square value function 𝑆

Output: Value functions 𝐻 and 𝑆 after update

1 for𝑤 in𝑊 (𝑡) do
2 if there exists an order 𝑟 , s.t. (𝑤, 𝑟) ∈ 𝑀 (𝑡) then
3 Δ𝐻 ← 𝑝𝑟 + 𝛾𝜏𝑟𝐻 (𝑑𝑟) − 𝐻 (𝑙𝑤)
4 Δ𝑆 ← 𝑝𝑟 + 𝛾𝜏𝑟 𝑆 (𝑑𝑟) − 𝑆 (𝑙𝑤)
5 end
6 else
7 Δ𝐻 ← 0, Δ𝑆 ← 0

8 end
9 𝐻 ← 𝐻 + 𝛽 · Δ𝐻 , 𝑆 ← 𝑆 + 𝛽 · Δ𝑆

10 end
11 return 𝐻 , 𝑆

4.2.5 Putting It Together. The learning-based re-weighting module

consists of three stages: evaluating, learning, and guiding. Algo-

rithm 1,2 and 3 illustrate the processes, respectively. In line 4 of

Algorithm 3, Function 𝑑𝑖𝑠𝑡 calculates the distance.

Note that the re-weighting module exploits reinforcement learn-

ing to explicitly consider the impact of current assignments on

future ones. It does not directly contribute to fairness. In LAF, opti-

mizing the fairness objective is embedded into the optimization of

the total utility, as we will explain next.

4.3 Efficient Bi-Objective Assignment
This subsection presents our assignment algorithms that optimize

both utility and fairness.

4.3.1 Fair Augmentation. Unlike previous bi-objective solutions
that either rely on the slow linear programming [17] or conduct

repetitive reassignments between separate optimizations on fair-

ness and utility [13], we propose to directly embed fairness check

into the process to maximize the utility for faster assignments.

The standard method to find a matching on a bipartite graph

that maximizes utility is the Kuhn-Munkras algorithm [8], where

the basic operation is augmentation. That is, we firstly try to find

a path composed of matched and unmatched edge alternatively,

Algorithm 3: Guiding stage of re-weighting module.

Input: Idle drivers𝑊 (𝑡)
𝑖

, candidate guiding destinations 𝐴ℎ ,

weight 𝜉 from batch 1 to current batch 𝑡

Output: Guidance Scheme 𝒮

1 𝒮← ∅

2 Sort drivers based on

∑𝑡
𝑖=1 𝑢

(𝑖)
𝑤 /𝜉 (𝑖)∑𝑡

𝑖=1 𝑎
(𝑖)
𝑤

ascendingly.

3 for𝑤 ∈𝑊 (𝑡) do
4 𝑔← argmax𝑔′∈𝐴ℎ

𝑉 (𝑔′)−𝑉 (𝑙𝑤)
𝑑𝑖𝑠𝑡 (𝑔′,𝑙𝑤)

5 𝒮← 𝒮
⋃(𝑤,𝑔)

6 end
7 return 𝒮

while the summation of the unmatched edges’ weights is larger

than that of matched edges, and if found, we switch the unmatched

and matched edges to increase the total utility. The idea of our fair

augmentation algorithm is, when searching for an augmentation

path, we check the drivers’ future earnings ratios and reject the

augmentation with large earnings ratios variance. However, reject-

ing augmentation may impair the achieved utility. Consider the

situation where a newly online driver in the augment path, because

he/she has almost zero idle time, so his/her earnings ratio after serv-

ing a request will be very large, which leads to frequent rejection of

augmentation. Also note that checking the variance of all drivers af-

ter finding an augment path is time-consuming. Therefore, instead

of checking all drivers, we only check the adjacent two drivers in

the augment path, and once we find variance ratio, we break and

stop augmentation immediately. Algorithm 4 illustrates the fair

augmentation algorithm, which has a time complexity of 𝑂 (𝑁 2𝑀),
where𝑀 = max(|𝑊 (𝑡) |, |𝑅 (𝑡) |)2 and 𝑁 = min(|𝑊 (𝑡) |, |𝑅 (𝑡) |).

4.3.2 Accelerations. We further accelerate the fair augmentation

algorithm taking advantage of the sparsity of the bipartite graph.

Specifically, we perform breadth first search (BFS) to split the as-

signment graph into several parts. Many of these parts contain only

one driver (request), so we use special judge to quickly find the best

request (driver) for the single node. Our bi-objective assignment

algorithm with further accelerations is shown in Algorithm 5.

5 EVALUATION
This section presents the evaluations of our methods.

5.1 Experiment Setting
Validation Environment. We conduct experiments on a simula-

tor based on a major ride hailing platform. We experiment on three

cities for 21 days. The simulator generates requests, simulates the

drivers and passengers’ behaviors (i.e., idle driver transitions and
passenger rejections), builds the bipartite graph, and executes our

assigning algorithm.

Baselines.We compare our method with the following baselines.

• Distance-Greedy (DG): it assigns every request to its closest

available driver. It is a widely used baseline in ride hailing.

• Earnings-Ratio-Greedy (ERG): it first sorts all available dri-

vers byweighted amortized fairness 𝐹𝑤 in a descending order

Algorithm 4: Fair augmentation.

Input: The bipartite graph 𝐺 (𝑡) =<𝑊 (𝑡) , 𝑅 (𝑡) , 𝐸 (𝑡) >,
current batch 𝑡 , weight 𝜉 from batch 1 to 𝑡

Output: Assignment𝑀 (𝑡)

1 𝑀 (𝑡) ← ∅
2 for𝑤 ∈𝑊 (𝑡) do
3 while there exists an augment Path 𝑃 do
4 𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝑇𝑟𝑢𝑒

5 for every pair of adjacent drivers𝑤𝑝𝑟𝑒 ,𝑤𝑐𝑢𝑟 do
6 𝑟𝑝𝑟𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑜 𝑓 𝑤𝑝𝑟𝑒

7 𝑟𝑐𝑢𝑟 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑜 𝑓 𝑤𝑐𝑢𝑟

8 if |
∑𝑡

𝑖=1

𝑢
(𝑖)
𝑤𝑝𝑟𝑒

𝜉 (𝑖)
+
𝑝𝑟𝑝𝑟𝑒

𝜉 (𝑡)∑𝑡
𝑖=1 𝑎

(𝑖)
𝑤𝑝𝑟𝑒 +𝜏𝑟𝑝𝑟𝑒

−
∑𝑡

𝑖=1

𝑢
(𝑖)
𝑤𝑐𝑢𝑟

𝜉 (𝑖)
+ 𝑝𝑟𝑐𝑢𝑟

𝜉 (𝑡)∑𝑡
𝑖=1 𝑎

(𝑖)
𝑤𝑐𝑢𝑟 +𝜏𝑟𝑐𝑢𝑟

| > 𝜖

then
9 𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝐹𝑎𝑙𝑠𝑒

10 break
11 end
12 end
13 if accept then
14 𝑢𝑝𝑑𝑎𝑡𝑒 𝑀 (𝑡)𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃 .

15 end
16 end
17 end
18 return𝑀 (𝑡)

Algorithm 5: Assignment algorithm.

Input: The bipartite graph 𝐺 (𝑡) =<𝑊 (𝑡) , 𝑅 (𝑡) , 𝐸 (𝑡) >
Output: Assignment𝑀 (𝑡)

1 𝑃 (𝑡) ← split 𝐺 (𝑡) by BFS.

2 𝑀 (𝑡) ← ∅
3 for 𝑝 ∈ 𝑃 (𝑡) do
4 if there is only one driver𝑤 (request 𝑟) then
5 𝑀𝑝 ← <𝑤 (best driver), best request(𝑟)>

6 end
7 else
8 𝑀𝑝 ← FairAugmentation(p)

9 end
10 𝑀 (𝑡) ← 𝑀 (𝑡)

⋃
𝑀𝑝

11 end
12 return𝑀 (𝑡)

and sorts requests by rewards per batch(𝑝𝑟 /𝜏𝑟) in a descend-

ing order. Then it assigns request to drivers respectively

based on the order.

• Integer-Linear-Programming (ILP) [17]: it is the first work

that applies amortized fairness to assess the earnings fairness

in ride hailing. It converts the problem into an integer linear

programming problem. For fair comparison, we omit the

passenger-side fairness from its optimization objective.

• Reassign (REA) [13]: it first calculates two assignments op-

timizing utility and fairness (adjust to min𝑤 𝐹𝑤 for equal

Table 2: Overall results on fairness 𝐹 and utility 𝑈 of differ-
ent assignment algorithms. A smaller 𝐹 means better fair-
ness and a larger𝑈 means higher utility.

City Method 𝐹 (weekday) 𝑈 (weekday) 𝐹 (weekend) 𝑈 (weekend)

A

DG 41, 767 2, 242, 977 31, 962 2, 131, 996

ERG 48, 549 2, 256, 277 35, 903 2, 172, 489

ILP [17] 44, 072 2, 246, 077 30, 573 2, 122, 834

REA [13] 44, 251 2, 250, 118 27, 865 2, 134, 534

LAF (ours) 22, 656 2, 656, 773 13, 384 2, 565, 060

B

DG 31, 217 1, 297, 735 28, 563 1, 360, 659

ERG 38, 594 1, 373, 478 37, 464 1, 452, 488

ILP [17] 29, 496 1, 281, 273 25, 077 1, 336, 712

REA [13] 31, 744 1, 319, 958 33, 671 1, 373, 691

LAF (ours) 7,420 1, 479, 348 4, 976 1, 616, 385

C

DG 12, 897 872, 693 9, 044 865, 031

ERG 13, 704 885, 558 8, 793 882, 573

ILP [17] 12, 377 862, 588 8, 439 863, 245

REA [13] 13, 491 880, 847 8, 684 881, 519

LAF (ours) 2, 553 1, 114, 000 2, 392 1, 109, 474

comparison), respectively. Then it reassigns matching from

one assignment to the other to find a trade-off between util-

ity and fairness. This is the state-of-the-art solution that

optimizes both utility and fairness in ride hailing.

Evaluation Metrics.We assess the performance of different meth-

ods by fairness, utility and efficiency, where fairness is measured by

the temporal earnings fairness (Definition 6), utility by the total util-

ity (Definition4) and efficiency by hourly accumulated consuming

time for assignment.

Implementation. All the algorithms are implemented in Python3.

We set the discount factor 𝛾 (in Eq. (7)) to 0.9 and learning rate 𝛽 ′

(in Eq. (8)) to 0.025. The experiments are conducted on Intel Xeon

CPU E5-2630 v4 @ 2.20GHz with 12GB memory.

5.2 Overall Performance
Table 2 summarizes the fairness and utility metrics of different

assignment methods on datasets of the three cities. Overall, LAF

improves the fairness metric by 45.7% ~81.4% than the baselines on

weekdays and 52.0% ~86.7% on weekends. LAF also achieves the

highest total utility, which is 7.7% ~29.1% higher than the baselines

on weekdays and 11.3% ~28.5% on weekends. In particular, our

LAF outperforms ILP by 68.4% and 22.1% on average in terms of

fairness and utility, respectively. As for REA, LAF gains an average

improvement of 69.3% and 20.1% in terms of fairness and utility,

respectively. Also, LAF consistently outperforms the baselines in

all the three cities.

Fig. 4 compares the efficiency of different algorithms. The simple

baselines DG and ERG have a time complexity of𝑂 (|𝐸 | log |𝐸 |) and
𝑂 (|𝑊 | log |𝑊 |), respectively. They are fast but perform poorly in

terms of fairness and utility e.g., 114.6% and 14.2% worse than LAF

in fairness and utility at weekends in City A. Our LAF is almost as

fast as these two simple solutions, and the running time of LAF is

relatively stable across all hours of the day. ILP and REA can be up

to 797% slower than LAF. Also their running time is sensitive to

the variations in traffic. During the rush hours when the number

of requests surges rapidly, the time cost of these two methods also

increase significantly.

hour
0

3

6

tim
e/

10
3 s

ec
on

ds
DG
ERG
ILP
REA
LAF

Figure 4: Execution time of each algorithm to hours in a day
on City A.
5.3 Experimental Result Analysis
We now take a deeper look at the performance of different methods

on datasets of City A, the largest in scale among the three cities, to

further understand the effectiveness of our method.

5.3.1 Why LAF Outperforms Others: A Case Study. As an illustra-

tion on the difference between different assignment algorithms, we

plot the trajectories of a driver in Fig. 5.

• DG assigns the driver the nearest request regardless of fair-

ness. After the second assignment, the driver is trapped in a

remote area and cannot go back for other request (Fig. 5(a)).

• ERG assigns the driver with the lowest earnings ratio with

the request of the highest 𝑝𝑟 /𝜏𝑟 . After the second request,

the driver suffers a low earnings ratio and is assigned a long-

distance request (Fig. 5(b)).

• ILPmakes the same assignment as DG for this driver (Fig. 5(c)).

This is because after the driver serves a long-distance request,

his/her earnings ratio is relatively high, resulting in a short-

distance request for the next batch. Then in a remote area, the

relatively high earnings ratio after serving the two requests

makes it difficult for the driver to get another request.

• REA accounts for both fairness and utility. The optimization

for utility increases the number of requests assigned to the

driver (Fig. 5(d)). But still, REA is unaware of the destination

and the driver can only pick a short-distance request and

may be trapped in a remote area.

• Our LAF makes assignments by considering their impact

on the future assignments. The guidance also avoids the

driver being trapped in remote areas. As shown in Fig. 5(e),

after serving some requests in the busy area, the driver has

a relatively high earnings ratios. Then the driver is assigned

requests with remote destinations to be fair. Afterwards, to

avoid being idle for too long, the driver is guided to areas

where he/she can get requests and return to the busy area.

5.3.2 Correlation between Traffic Dynamics and Fairness. One of
our contributions is to use the weighted amortized fairness 𝐹𝑤 as

the fairness metric (Definition 5). We justify the advantages of our

weighted amortized fairness metric by showing the correlation

between the weight 𝜉−1 (𝑡) in 𝐹𝑤 and the traffic dynamics.

Fig. 6(a) plots the numbers of drivers and requests as well as the

weight 𝜉−1 (𝑡) over different hours of a day. The numbers of drivers

Table 3: Comparison ofunweighted amortized fairness (used
in [17] and [13]) and utility. DG is excluded because it does
not no fairness. The utility results of the algorithms remain
the same as Table 2.

Method 𝐹 (weekday) 𝑈 (weekday) 𝐹 (weekend) 𝑈 (weekend)

DG 44, 442 2, 242, 977 33, 057 2, 131, 996

ERG 54, 270 2, 248, 669 38, 315 2, 166, 980

ILP[17] 40, 066 2, 243, 334 30, 772 2, 120, 947

REA[13] 42, 003 2, 242, 561 31, 832 2, 130, 431

LAF (ours) 20, 539 2, 359, 431 12, 963 2, 447, 596

and requests reflect the variations of traffic. As is shown, the traffic

goes up from 6 a.m. to 8 a.m., fluctuates during the daytime, and

drops at night. The weight 𝜉−1 (𝑡) shows the same trend. It indicates

we put more weight of fairness during rush hours, where there are

more drivers and thus requiring more fairness. Also note that the

median of driver earnings within the current hour as 𝜉 is a good

option because it changes slightly earlier than the traffic. This is

because experienced drivers tend to turn active a bit earlier before

the rush hours, causing the median of earnings drops earlier and

thus the weight 𝜉 increases predictably.

Fig. 6(b) shows the hourly earnings of 3, 500 randomly sampled

drivers. As is shown, the distribution of drivers’ hourly earnings are

relatively even when using our fairness metric as an optimization

objective, and our LAF algorithm performs the best in reducing the

number of drivers with extremely high/low hourly earnings.

5.3.3 Effectiveness in Optimizing Unweighted Amortized Fairness.
Table 3 compares different algorithms on optimizing the unweighted
amortized fairness (i.e., set 𝜉 (𝑡) to 1 for all 𝑡) and utility. The results
shows that our LAF still achieves 57.9% ~62.2% improvement in

fairness and 17.3% ~17.6% improvement in utility, even though

ILP and REA are designed to optimize the unweighted amortized

fairness. Therefore, our LAF outperforms the state-of-the-arts in

both unweighted and weighted amortized fairness.

6 CONCLUSION
In this paper, we propose Learning to Assign with Fairness (LAF)
that effectively and efficiently optimizes the total utility (expected

total earnings of drivers) and driver fairness (weighted amortized

fairness of driver earnings). The key novelty is to apply reinforce-

ment learning to make assignments that explicitly account for the

dependency among assignments such that both utility and fairness

can be optimized in a holistic view. LAF also incorporates a set

of techniques to stay adaptive to traffic dynamics and different

urban layouts, and make fast assignments over large-scale of data.

Experimental results show that LAF achieves 86.7%, 29.1% and 797%

improvement in terms of fairness, utility and efficiency over the

state-of-the-art fair assignment algorithms for ride hailing. We en-

vision our work as a guideline for practical adoption of fair task

assignment in real-world ride hailing applications.

ACKNOWLEDGMENTS
We are grateful to anonymous reviewers for their constructive

comments. This work is partially supported by the National Key

Research and Development Program of China under Grant No.

2018AAA0101100, the National Science Foundation of China (NSFC)

Start Point Finish Point Remote AreaBusy Area Serving State Idle State

(a) DG (b) ERG (c) ILP (d) REA

Guiding

Fairness
Assignment

(e) LAF

Figure 5: A driver’s trajectories under different assignment algorithms.

4 8 12 16 20 24
hour

0.0

0.2

0.4

0.6

0.8

1.0 1(t)
driver number
request number

(a) (b)

Figure 6: (a) illustratesmin-max normalization of 𝜉−1 (𝑡), dri-
ver number and request number in different hours of a day.
(b) illustrates systematic sampled 3.5k drivers sorted in de-
scending order of hourly earnings.
under Grant Nos. 61822201, U1811463 and 62076017, the Hong

Kong RGC TRS T41-603/20-R, the CAAI Huawei MindSpore Open

Fund No. CAAIXSJLJJ-2020-020-A, and the State Key Laboratory of

Software Development Environment Open Funding No. SKLSDE-

2020ZX-07.

REFERENCES
[1] Barbara M. Anthony and Christine Chung. 2014. Online bottleneck matching.

Journal of Combinatorial Optimization 27, 1 (2014), 100–114.

[2] Eszter Bokányi and Anikó Hannák. 2020. Understanding inequalities in ride-

hailing services through simulations. Scientific reports 10, 1 (2020), 1–11.
[3] Ria Mae Borromeo, Thomas Laurent, Motomichi Toyama, and Sihem Amer-Yahia.

2017. Fairness and Transparency in Crowdsourcing. In Proc. EDBT. OpenPro-
ceedings.org, Venice, Italy, 466–469.

[4] Niv Buchbinder and Joseph (Seffi) Naor. 2006. Fair Online Load Balancing. In

Proceedings of the Symposium on Parallelism in Algorithms and Architectures.
ACM, New York, NY, USA, 291–298.

[5] Zhao Chen, Peng Cheng, Lei Chen, Xuemin Lin, and Cyrus Shahabi. 2020. Fair

Task Assignment in Spatial Crowdsourcing. Proceedings of the VLDB Endowment
13, 11 (2020), 2479–2492.

[6] Yuga J. Cohler, John K. Lai, David C. Parkes, and Ariel D. Procaccia. 2011. Optimal

Envy-Free Cake Cutting. In Proc. AAAI. AAAI, San Francisco, CA, USA, 626–631.

[7] John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. 2014. Price of

fairness in kidney exchange. In Proc. AAMAS. Springer, Paris, France, 1013–1020.
[8] Jack Edmonds and Richard M Karp. 1972. Theoretical improvements in algorith-

mic efficiency for network flow problems. J. ACM 19, 2 (1972), 248–264.

[9] Robert S Garfinkel. 1971. An Improved Algorithm for the Bottleneck Assignment

Problem. Operations Research 19.7 (1971), 1747–1751.

[10] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,

and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple

Resource Types. In Proc. NSDI. USENIX Association, Boston, MA, USA, 323–336.

[11] David R. Karger, Sewoong Oh, and Devavrat Shah. 2014. Budget-Optimal Task

Allocation for Reliable Crowdsourcing Systems. Operations Research 62, 1 (2014),

1–24.

[12] Ian A. Kash, Ariel D. Procaccia, and Nisarg Shah. 2014. No Agent Left Behind:

Dynamic Fair Division of Multiple Resources. Journal of Artificial Intelligence
Research 51 (2014), 579–603.

[13] Nixie S. Lesmana, Xuan Zhang, and Xiaohui Bei. 2019. Balancing Efficiency and

Fairness in On-Demand Ridesourcing. In Proc. NeurIPS. Curran Associates Inc.,

Vancouver, BC, Canada, 5310–5320.

[14] Max O. Lorenz. 1905. Methods of measuring the concentration of wealth. Publi-
cations of the American statistical association 9, 70 (1905), 209–219.

[15] Duncan C. McElfresh and John P. Dickerson. 2018. Balancing Lexicographic

Fairness and a Utilitarian Objective With Application to Kidney Exchange. In

Proc. AAAI. AAAI, New Orleans, LA, USA, 1161–1168.

[16] Hilary C Robinson. 2017. Making a digital working class: Uber drivers in Boston,
2016-2017. Ph.D. Dissertation. Massachusetts Institute of Technology.

[17] Tom Sühr, Asia J. Biega, Meike Zehlike, Krishna P. Gummadi, and Abhijnan

Chakraborty. 2019. Two-Sided Fairness for Repeated Matchings in Two-Sided

Markets: A Case Study of a Ride-Hailing Platform. In Proc. KDD. ACM, Anchorage,

AK, USA, 3082–3092.

[18] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press, Cambridge.

[19] Xiaocheng Tang, Zhiwei (Tony) Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai

Ma, Hongtu Zhu, and Jieping Ye. 2019. A Deep Value-network Based Approach

for Multi-Driver Order Dispatching. In Proceedings of International Conference on
Knowledge Discovery & Data Mining. ACM, Anchorage, AK, USA, 1780–1790.

[20] Yongxin Tong, Yuqiang Chen, Zimu Zhou, Lei Chen, Jie Wang, Qiang Yang,

Jieping Ye, and Weifeng Lv. 2017. The Simpler The Better: A Unified Approach

to Predicting Original Taxi Demands based on Large-Scale Online Platforms. In

Proceedings of International Conference on Knowledge Discovery & Data Mining.
ACM, Halifax, NS, Canada, 1653–1662.

[21] Yongxin Tong, Jieying She, Bolin Ding, Lei Chen, Tianyu Wo, and Ke Xu. 2016.

Online Minimum Matching in Real-Time Spatial Data: Experiments and Analysis.

PVLDB 9, 12 (2016), 1053–1064.

[22] Xing Wang, Niels Agatz, and Alan Erera. 2018. Stable matching for dynamic

ride-sharing systems. Transportation Science 52, 4 (2018), 850–867.
[23] Yansheng Wang, Yongxin Tong, Cheng Long, Pan Xu, Ke Xu, and Weifeng Lv.

2019. Adaptive Dynamic Bipartite Graph Matching: A Reinforcement Learning

Approach. In Proc. ICDE. IEEE Press, Macao, China, 1478–1489.

[24] Pan Xu, Yexuan Shi, Hao Cheng, John P. Dickerson, Karthik Abinav Sankarara-

man, Aravind Srinivasan, Yongxin Tong, and Leonidas Tsepenekas. 2019. A

Unified Approach to Online Matching with Conflict-Aware Constraints. In Proc.
AAAI. AAAI, Honolulu, HI, USA, 2221–2228.

[25] Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan,

Chunyang Liu, Wei Bian, and Jieping Ye. 2018. Large-Scale Order Dispatch in

On-Demand Ride-Hailing Platforms: A Learning and Planning Approach. In

Proceedings of International Conference on Knowledge Discovery & Data Mining.
ACM, London, UK, 905–913.

[26] Lingyu Zhang, Tao Hu, Yue Min, Guobin Wu, Junying Zhang, Pengcheng Feng,

Pinghua Gong, and Jieping Ye. 2017. A Taxi Order Dispatch Model based On Com-

binatorial Optimization. In Proceedings of International Conference on Knowledge
Discovery & Data Mining. ACM, Halifax, NS, Canada, 2151–2159.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Method
	4.1 LAF Overview
	4.2 Learning-based Re-weighting
	4.3 Efficient Bi-Objective Assignment

	5 Evaluation
	5.1 Experiment Setting
	5.2 Overall Performance
	5.3 Experimental Result Analysis

	6 Conclusion
	Acknowledgments
	References

