
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2022, 12(1): 107–129, doi: 10.21655/ijsi.1673-7288.00273
©2022 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

A Secure Multi-party Data Federation System

Shuyuan Li (李书缘)1,2, Yudian Ji (季与点)3, Dingyuan Shi (史鼎元)1,2,
Wangdong Liao (廖旺冬)1,2, Lipeng Zhang (张利鹏)1,2, Yongxin Tong (童咏昕)1,2,
Ke Xu (许可)1,2

1 (State Key Laboratory of Software Development Environment (Beihang University), Beijing 100191,
China)

2 (School of Computer Science and Engineering, Beihang University, Beijing 100191, China)
3 (Information Center of Ministry of Science and Technology, Beijing 100862, China)
Corresponding author: Yongxin Tong, yxtong@buaa.edu.cn

Abstract In the era of big data, data is of great value as an essential factor in production. It
is of great significance to implement its analysis, mining, and utilization of large-scale data via
data sharing. However, due to the heterogeneous dispersion of data and increasingly rigorous
privacy protection regulations, data owners cannot arbitrarily share data, and thus data owners are
turned into data silos. Since data federation can achieve collaborative queries while preserving
the privacy of data silos, we present in this paper a secure multi-party relational data federation
system based on the idea of federated computation that “data stays, computation moves.” The
system is compatible with a variety of relational databases and can shield users from the
heterogeneity of the underlying data from multiple data owners. On the basis of secret sharing,
the system implements the secure multi-party operator library supporting the secure multi-party
basic operations, and the resulting reconstruction process of operators is optimized with higher
execution efficiency. On this basis, the system supports query operations such as Summation
(SUM), Averaging (AVG), Minimization/Maximization (MIN/MAX), equi-join, and θ-join and
makes full use of multi-party features to reduce data interactions among data owners and security
overhead, thus effectively supporting efficient data sharing. Finally, experiments are conducted
on the benchmark dataset TPC-H. The experimental results show that the system can support
more data owners than the current data federation systems SMCQL and Conclave and has higher
execution efficiency in a variety of query operations, exceeding the existing systems by as much
as 3.75 times.

Keywords data federation; database system; secure multi-party computation

Citation Li SY, Ji YD, Shi DY, Liao WD, Zhang LP, Tong YX, Xu K. A secure multi-party data
federation system. International Journal of Software and Informatics, 2022, 12(1): 107–129. http:
//www.ijsi.org/1673-7288/273.htm

With the advent and rapid development of the era of big data, data as a factor of production

This is the English version of the Chinese article ‘‘面向多方安全的数据联邦系统. 软件学报, 2022, 33(3):
1111–1127. doi: 10.13328/j.cnki.jos.006258”.
Funding items: National Key Research and Development Program of China (2018AAA0101100); National Natural
Science Foundation of China (61822201, U1811463, 62076017); the CCF-Huawei Database System Innovation Re-
search Plan (CCF-HuaweiDBIR2020008B); State Key Laboratory of Software Development Environment (Beihang
University) Open Program (SKLSDE-2020ZX-07)
Received 2021-07-01; Revised 2021-07-31; Accepted 2021-09-13; IJSI published online 2022-03-28

http://www.ijsi.org/1673-7288/273.htm
http://www.ijsi.org/1673-7288/273.htm

108 International Journal of Software and Informatics, 2022, 12(1)

has become more and more important in the application of various industries, and it is of great
significance to realize data sharing. The Opinions of the Central Committee of the Communist
Party of China and the State Council on Building Improved Systems and Mechanisms for Market
Allocation of Factors stated that China should accelerate the cultivation of data factor markets.
Specifically, it emphasizes the need to promote data opening and sharing and cultivate new
industries in the digital economy. It is clear that data sharing and data value mining are of
strategic importance to the future economic and social development of the country. The benefits
of data sharing are obvious. For example, when a patient has medical records and examination
reports filed in several hospitals, it will not only help the patient avoid repeated examinations
but also provide a more comprehensive understanding of the patient’s medical history and other
conditions if these data can be shared among hospitals; when government data are stored in
different information systems of different government departments, we can optimize government
services if we break the barriers to achieve the integration of big data on government services.

However, data sharing is severely limited in reality. Data is scattered and heterogeneous
among a large number of individuals, which makes data aggregation extremely difficult and limits
the sharing of data, a phenomenon known as the problem of “data silo”. Thus, corresponding
data integration technologies have been developed[1] to address this problem. However, data
privacy protection has become a widespread consensus worldwide in recent years. For instance,
the General Data Protection Regulation (GDPR) was issued by the EU on May 25, 2018, and the
Law on Personal Information Protection (Draft for Second Deliberation) and the Data Security
Bill (Draft for Second Deliberation) were published by the Standing Committee of the Chinese
National People’s Congress on April 30, 2021. All of these regulatory acts impose restrictions
on the processing and circulation of data, making it difficult for data sharing to be widely
implemented.

The increasingly stringent privacy protection requirements further exacerbate the “data silo”
phenomenon, in which data owners can only use the small-scale data they hold, and data can
hardly converge through sharing and is unable to give full play to its value. Only by connecting
silos and breaking sharing barriers among data can allow data to be used as a factor of production
to drive economic and social development effectively[2]. Under this condition, the concept of
federated computing was born, in which federation refers to a collection of independent and
autonomous data owners. The data owners in the federation ensure that the original sensitive
data does not leave original data owners to protect privacy. The core idea of privacy protection
in federated computing is that “data stays, computation moves”, namely that each data owner first
computes the data in each party and then aggregates the intermediate computations to obtain the
final results instead of sharing the data directly. This mode splits the computation to each party
to avoid the local flow of data, and thus the idea that “data stays, computation moves” in federated
computing can guide the data sharing mode under the requirement of privacy protection. On
the premise of “no data leaving original data owners” in federated computing, the following
challenges exist in building a data federation system under the above data sharing mode.

• It is difficult to guarantee the privacy requirements for data sharing. Effective data
sharing cannot be achieved without the participation of multiple data owners; however,
the underlying security operation design is a challenge for the federation system to support
multiple data owners.

• It is difficult to guarantee the efficient and secure querying of data sharing. The data
sharing process in a federation scenario needs to protect data privacy and security, which
requires a secure design of the federation system. However, secure computing is costly,
and ensuring efficient sharing of large-scale data also poses a challenge.

• It is difficult to guarantee heterogeneous multi-party collaboration for data sharing. In

Li SY, et al. A secure multi-party data federation system 109

a data sharing scenario, heterogeneity problems exist among data owners, including
database system heterogeneity and data schema heterogeneity. Thus, the system should
also adapt to heterogeneous parties while protecting privacy.

No system has been able to solve the above three challenges well. In the 1980s, federated
databases were essentially middleware coordinating multiple databases to accomplish a query.
However, those systems focused on solving the heterogeneity of multiple databases and the
disassembly and rewriting of federated queries and paid no attention to the privacy issues in
federated queries. Until the beginning of the 21 st century, some secure multi-party computation
tool libraries[3, 4] were gradually open-sourced for easy development and use. As a result,
data federation systems begin to develop since 2017, and unlike federation databases, a data
federation system emphasizes more on data privacy protection for data owners. Some scholars
have attempted to combine secure multi-party computation technologies with federation ideas
to build privacy-preserving data federation systems[5, 6]. However, those efforts are limited by
the use of secure multi-party computation tool libraries that can only support the participation
of two or three data owners.

To address the above challenges, we present a secure multi-party data federation system.
This system consists of the system adaptation, secure multi-party operator library, query engine,
and interactive interface. It supports multiple heterogeneous databases, multiple secure query
operations including θ-join, and a unified user-oriented SQL Language and graphical user
interface. In this way, this system enables high efficiency of secure multi-party data sharing,
and its main contributions are as follows.

• The data federation system for multi-party security is built. The system can support
secure data sharing with multiple data owners with more than three parties. Meanwhile,
it is equipped with an adaptation interface to shield the system from the heterogeneity of
each data owner’s database system. It also provides a user-friendly graphical interface,
supports SQL queries, and can adapt to various query interfaces.

• It implements a secure multi-party operator library with high efficiency that supports
addition, subtraction, multiplication, division, and comparison. The implementation of
the operator library is based on the secret sharing framework, and the basic operations
covered can support basic data query operations. Efficient result reconstruction is realized
considering the features in secret sharing.

• An efficiently secure multi-party query engine including θ-join is achieved. On the basis
of the aforementioned basic operators, the query engine can carry out query operations
such as SUM, AVG, MIN/MAX, equi-join, and θ-join. The design process also takes
into account the characteristics of multiple parties and uses the transferability of the join
process to ensure the efficiency of query operations.

The structure of this paper is as follows: Section 1 introduces the background of the system.
Section 2 demonstrates the system architecture and system workflow. Sections 3 and 4 illustrate
the secure multi-party operator library and query engine, respectively. Section 5 presents
the system adaptation and interactive interfaces. Section 6 shows the system performance
verification results on a standard test set. Section 7 introduces related work. Finally, Section 8
concludes the paper with an outlook.

1 Background
In the context of increasingly strict data privacy and security protection, as well as serious

“data silos” problems, data federation is an important idea to achieve data sharing. Specifically,
the data federation F can be considered as a collection of n data owners and the central server
C, where n ≥ 3. In data federation, the databases of different data owners are heterogeneous.

110 International Journal of Software and Informatics, 2022, 12(1)

In addition, for practical application scenarios, the number (n) of data owners is usually more
than three. For example, in an epidemiological survey, the cooperation of multiple data owners
such as hospitals, map applications, mobile payment, and online taxi platforms may be required.
In a taxi union, the number of taxi companies participating in the union may range from a dozen
to several dozen. In some scenarios, the computation task of the central server of the data
federation can be rotated among data owners.

For the i-th data owner Pi in the data federation, the data owned by Pi is assumed to be
di, and the safety model followed by each data owner is presumed to be semi-honest[7]. In
the semi-honest model, the participants are “honest-but-curious”, namely that they follow the
protocol and the code to be executed honestly, but they infer information from the data obtained
during the execution. If they can infer the information that should be protected, the system is
insecure. The semi-honest model is a widely used assumption in the field of security, and it has
been adopted by existing representative secure multi-party database systems[5, 6].

For data sharing in federation scenarios, the data federation system should support secure
multi-party federation query operations. The definition is as follows:

Definition 1 (Federated query operation). For federated query operation f : Dn → R,
its result shall be consistent with the result of the corresponding conventional database query
operation, i.e., f(d1, d2, · · · , dn) = f ′(d1 ∪ d2 ∪ · · · ∪ dn), and in the computation, data di of
the data owner Pi shall not be disclosed to any other data owner.

The basic federated query operations include federated SUM (f-SUM), federated AVG (f-
AVG), federated MIN/MAX (f-MIN/MAX), federated equi-join (f-equi-join), and federated arbi-
trary join (f-θ-join). These query operations shall support multi-party heterogeneous databases
and ensure security. In other words, each data owner shall ensure that the original data does
not leave its original data owner when data owners are computing together. The data sharing
under this security guarantee requires that each data owner should not send its original data
directly to other parties for computation during the execution of query operations. This ensures
that each data owner can jointly obtain the results of the query operation after completing the
query operation but cannot obtain the original data of other data owners, thus protecting the data
privacy of each party.

The following example is the application in the medical field in combination with the
above definition. For example, if a patient has medical records and examination reports filed
in multiple hospitals, sharing these data among hospitals will not only help the patient avoid
duplicate examinations but also provide a more comprehensive understanding of the patient’s
medical history. In this application case, each hospital, a data owner, has a large amount of
medical data on this patient, and all these together constitute a data federation. To protect the data
privacy of the patient, multiple hospitals need to share data securely. For instance, the average
value of the patient’s previous liver function test indexes can be queried by first f-equi-join and
then f-AVG of the liver function test data table according to the ID number of this patient on the
premise of no patient data leaving its original data owner.

In the above scenario, the main objectives of system design are the data security objective
due to the federation scenario, the efficiency objective due to the resulting computation overhead
control, and the usability objective due to the heterogeneity of multiple databases. The following
three system objectives, i.e., security, efficiency, and usability objectives, correspond to the
three challenges mentioned above, namely, the difficulty of guaranteeing privacy and security,
the difficulty of efficient and secure query, and the difficulty of heterogeneous multi-party
collaboration, respectively.

(1) Security objective
In a federation scenario, multiple parties cannot trust each other, and data cannot leave

Li SY, et al. A secure multi-party data federation system 111

its original data owner. Other data owners may make inferences in view of public information
available. For this reason, neither the querying user nor any parties can infer any additional
information from the public information, except that query statements and query results are
publicly accessible to all data owners. For example, the user and all data participants should
only know the final SUM result in a secure multi-party SUM operation but cannot infer the exact
value of each party’s respective participation in the SUM. In this way, the data owner’s data
can be prevented from being stolen during the computation. This is a common requirement for
query operations in secure multi-party database systems[5, 6].

(2) Efficiency objective
In a federation scenario, the computation overhead of query operations has two main

sources. Firstly, the protected object of security operations is data, and hence the amount of
protected data is large, especially in join operations where the protected object is a data column,
and a large amount of data leads to a high protection cost. Secondly, the query operation
in the data federation scenario requires the participation of multiple parties, and solving the
heterogeneity problem of each data owner and the collaboration problem of multiple parties will
also bring overhead. To ensure the efficiency of the system, we need to design optimization
modules to address these sources of overhead. For the overhead caused by the large amount
of protected data, we need to design efficient security operators to optimize the operation
efficiency; for the overhead caused by the coordination of multiple parties, we should flexibly
take advantage of the parallelism of multiple parties to improve the efficiency. The operating
efficiency of the system will affect its performance in the application. In a taxi union, the
operating efficiency determines the response time of the union platform to orders; the operating
efficiency of the system determines the time spent on case tracing and close contact investigation
in an epidemiological survey.

(3) Usability objective
In a federation scenario, the database system of each data owner is heterogeneous, and

therefore the system shall realize the adaptation and unification of heterogeneous databases. In
addition, a unified SQL query interface and graphical management interface shall be built for
users to facilitate the coordination of multiple parties.

The system is designed to achieve the above objectives, and the specific architecture and
process design are described in Section 2.

2 System Overview
2.1 System architecture

The architecture of the proposed system is shown in Figure 1. The system is divided into
four layers, from the bottom multi-party database to the top, which are the system adaptation,
secure multi-party operator library, query engine, and interactive interface, respectively. At the
bottom, there are the databases of the different data owners in the data federation. In order
to screen the heterogeneity of the databases, we write adaptation modules for different kinds
of databases to complete the system adaptation, which corresponds to the objective design in
Section 1.2. On top of the system adaptation, the secure multi-party operator library and the
query engine are the core modules of the system, which are designed to meet the security and
efficiency objectives in Section 1.2, respectively, and thus the system can support secure and
efficient multi-party data sharing. The graphical interface and the SQL query interface in the
interactive interface are designed to facilitate multi-user coordination, and together with the
system adaptation, they accomplish the usability objective design in Section 1.2. The specific
functions of each layer are as follows.

The bottom layer of the system is designed for each data owner and is comprised of the

112 International Journal of Software and Informatics, 2022, 12(1)

database system of each data owner. Considering the heterogeneity among these database
systems, the proposed system can support multiple database systems.

System adaptation: The proposed system can adapt to various query computations issued
by the upper secure multi-party operator library and to the underlying multi-party heterogeneous
data. The system shall first adapt to database systems. At present, it has been adapted to various
database systems such as MySQL, openGauss, SQL Server, and PostgreSQL. Then, adaptations
shall be made to different data schemas to build a unified user-oriented data view.

equi-join join

Basic
operator

System
adaptation MySQL openGauss SQLServer

Federated aggregation Federated join

Addition Subtraction Multiplication Division Comparision

PostgreSQL

Multi-party
database

Data owner 1 Data owner 2

Proposed system

Data owner 3 Data owner n

Interactive
interface

Federated
query engine

Query
rewriter SUM AVG MIN MAX

SMC operator
library

ODBCJDBCGUI

Query Query results

Figure 1 Architecture of the data federation system based on secure multi-party computation

Secure multi-party operator library: This operator library mainly contains basic op-
erators for multi-party security. Each basic operator is mainly used for simple computations
involving multiple data owners, such as the SUM and the quadrature operators for multi-party
security. During the computation process, each data owner will be called to query the local
database through the adaptation interface. The secure multi-party operator library is the basis
for developing subsequent federated query operations.

Query engine: This query engine takes over the queries obtained from the upper-layer
interactive interface and then parses and rewrites them into the corresponding federated query
operations. There are essentially two types of federated aggregations and federated joins involved
in multi-party federated computations. The federated aggregation operation supports SUM,
AVG, and MIN/MAX on the basis of the lower layer, and the federated joins support both
equi-join and θ-join.

Interactive interface: This interface provides users with a graphical interface to improve
the usability of the system. It receives queries from users through the interface and passes them
to the lower-layer query engine. The system supports the use of SQL query statements by users.

As previously mentioned, the secure multi-party operator library and the query engine are
the core components of the system, and their implementation is described in Sections 3 and 4,
respectively.

2.2 System workflow
The workflow of the proposed system is shown in Figure 2. Users first enter an SQL

query according to the unified view provided by the system. The central server of the system

Li SY, et al. A secure multi-party data federation system 113

receives the query, parses it into a syntax tree, and performs predicate push-down optimization
on the SQL query to be closer to the data source under the filtering condition. Then, for query
operations that involve the joint participation of multiple data owners, the query is rewritten
as a multi-party security-oriented federated query operation method. The server then sends
the execution plan of the rewritten federated query operation to each data owner, and the data
owner executes the rewriting process in two parts: firstly, it executes the query operation on the
local database and obtains the corresponding query results; secondly, it uses basic operators for
multi-party security to execute the part involving joint computation by multiple parties according
to the protocol. Finally, the federated query results are sent to the server, and the final query
results are obtained and returned to the user with methods such as secret sharing and secure set
merging on the premise of protecting the source of each federated query result.

Database
system

SMC operator
library Query engine User

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

Local query

VE

－

o

m
7…

刚

出
h

m

Q
Z

O

J
H
·
臼

C

α
－
R
．
剖

0
·

明

L－

B

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

SQL query

Query
parsing

Federated query
rewriting

－

u

d
·
川

“
·
骂

m－
nm

怡
－

y

rz』
圃
V
E

e
M

e

「
「
－

HM

－
ny

Federated
execution plans

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

．．．．

Query results

Federated
Query results

Local query results

Basic operator

Figure 2 System workflow of query processing

3 Secure Multi-party Operator Library
The secure multi-party operator library of this system supports multi-party security-oriented

computations, including addition, subtraction, multiplication, division, and comparison, and
thus it helps realize a variety of query operations in the system. Each operator ensures data
security with the secure multi-party computation technology based on secret sharing. The
main reason for adopting this technology instead of a garbled circuit is that secret sharing
can better support multiple parties. The existing data federation systems such as SMCQL[5]

and Conclave[6] are based on garbled circuit tool libraries such as ObliVM[3] or Obliv-C[4],
which cannot involve more than three parties to participate in the computation. In contrast,
secure computation protocols based on secret sharing can well support multi-party participation.
Sharemind[8] and MP-SPDZ[9] are the main tool libraries for secret sharing technology. The
former is not open-sourced, which limits its application; interface encapsulation of the latter is
mainly computation-oriented, and its multi-party interaction mode is not compatible with data
federation systems. Therefore, it is necessary to customize the basic computation library based
on secret sharing and multi-party security for the proposed system. In this paper, we introduce
the basic framework of this operator library and the execution process of operators in Sections
3.1 and 3.2, respectively, and elaborate on the example of the SUM operator.

114 International Journal of Software and Informatics, 2022, 12(1)

3.1 Framework of operator library
The system is designed to implement the basic operators on the basis of secret sharing of

the Shamir(t, n) model[10]. This model ensures that when a secret is scattered among n data
owners, at least t data owners need to participate to reconstruct the secret together. On this basis,
the framework of the secure multi-party operator library is divided into three phases: secret
distribution, local computation, and result reconstruction, which are described below.

(1) Secret distribution
In the secret distribution phase, firstly, each data owner is assigned a number (No.); then,

according to the set threshold t, each party generates a polynomial with the highest count term
as the threshold, and the input data of that party is used as the constant term of the polynomial.
Next, the No. of each data owner is brought into the polynomial to calculate its sub-secret that
will be further sent to the data owner of that No.

(2) Local computation
After each data owner received the sub-secret from all other parties, the sub-secret is

calculated according to different basic operators, and the result is the sub-secret of the final
result.

(3) Result reconstruction
Any data owners not less than t send the sub-secrets of the final result obtained in the

previous phase to the central server. Since the final objective result is a constant term of a higher-
order polynomial, and the order of the polynomial increases with the number of participating
data owners, the sub-secret received by the central server is a point on the polynomial. Therefore,
the final result of the basic operator can be reconstructed by the central server with the Lagrange
interpolation method by solving the higher-order polynomial according to the sub-secret.

Among the above three phases, the high expenditure of the result reconstruction phase is the
bottleneck of a secure multi-party operator library as the Lagrange interpolation method used to
solve higher-order polynomials in this phase leads to two problems. Firstly, solving higher-order
polynomials in the result reconstruction phase gives rise to a high computation overhead, while
only simple random number generation and polynomial computation are involved in the secret
distribution and local computation phases; secondly, the common Lagrange interpolation method
produces errors in solving higher-order polynomials, and these errors generally increase with the
order of the polynomials. In view of these two problems, the secure multi-party operator library
is improved by applying a divide and conquer approach to obtain the following computational
framework. For a basic operator with n data owners involved, the n data owners are first divided
into groups, and then the computational results of each group are regarded as the intermediate
results of the basic operator through the above three phases. Next, the intermediate results
of each group are considered as the new intermediate results through the above three phases,
and the process is repeated until the final results of the operator are obtained. This framework
reduces the number of participants in each secure multi-party computation by grouping, thus
reducing the number of polynomials in it, which can significantly decrease the error associated
with the basic operators and improve their operation efficiency.

3.2 Operator execution flow
Given the above secure multi-party operator library framework, the operator library of

this system implements basic operators such as addition, subtraction, multiplication, division,
and comparison. Taking the addition operator as an example, we introduce it as follows:
Algorithm 1 describes the computation process of the addition operator, where lines 1–5 describe
the execution steps of the secret distribution phase, and each party randomly generates a (t−1)-
order polynomial, calculates the sub-secret by substituting the No., and then distributes it;

Li SY, et al. A secure multi-party data federation system 115

lines 6–8 describe the execution steps of the local computation phase, where each party sums
up the sub-secret for the addition operator; line 9 describes the execution steps of the result
reconstruction phase, where the following Eq. (1) is used to calculate the sub-secret for each
party to obtain the final result R by substituting this equation into tRi, respectively.

R =

t∑
i=1

Ri ·
t∏

j=1,j ̸=i

xj

xj − xi
(1)

Algorithm 1. Federated SUM operator
Input: Data d1, d2, · · · , dn with the No. x1, x2, · · · , xn of data owners P1, P2, · · · , Pn, respec-

tively
Threshold value t

Output: The SUM result of the parties, in which R = d1 + d2 + · · ·+ dn
1. for each data owner Pi do
2. Generate a random polynomial fi(x) = di + a1x+ a2x2 + · · ·+ at−1xt−1

3. Compute the sub-secret Si, where
4. Distribute the sub-secret and send Si[j] to Pj

5. end for
6. for each data owner Pi do
7. Ri ←

∑
{Sj [i] | 1 ≤ j ≤ n, j ̸= i}

8. end for
9. Summarize Ri of any t parties, and solve the final results according to Eq. (1)
10. return R

Figure 3 illustrates the operation flow of the addition operator with the participation of
three data owners. The data of each data owner i is di, and the No. is xi. First, each data
owner generates two random numbers ai1 and ai2 and obtains a random polynomial fi. Then,
the Nos. are substituted into fi for computation, and the sub-secret f(xi) is sent to the i-th
party to complete the secret distribution phase. In the local computation phase, each data
owner sums up the obtained sub-secrets, i.e., f1(xi) + f2(xi) + f3(xi), which is equivalent
to constructing a polynomial S with

∑
di as constant term. In the final result reconstruction

phase, the polynomial S is solved with S(x1), S(x2), and S(x3), and the constant term is the
result of the SUM computation after solving the polynomial.

Server generates

Data owner 1 Data owner 2 Data owner 3

Figure 3 Operation flow of SUM operator in secure multi-party operator library

4 Query Engine
4.1 Design principles

Unlike a conventional database system, the query of this system is oriented to the data
federation formed by multiple data owners, and the data security and privacy of each party

116 International Journal of Software and Informatics, 2022, 12(1)

should be protected. Therefore, when a computation involves only the data of the data owner
in the process of query processing, the query can be done directly in plaintext locally without
considering the data privacy of that party. However, when a computation involves all data
owners and requires multi-party interactions, a large number of security operations have to be
performed according to security protocols to protect the data privacy of each party. Therefore,
the efficiency of multi-party interactions is the key to the performance of the query engine in
this system. Hence, the query engine of this system is designed to reduce the overhead of
multi-party interactions and for the three steps of query parsing, query plan generation, and
query plan execution in the query processing flow. The query engine of this system is designed
with the corresponding parsing unit, rewriting unit, and execution unit to complete the above
process. The specific design of the three units is as follows.

4.2 Design of parsing unit
A parsing unit receives the SQL query input from the user through the interface, and the

central server is responsible for its computation. This unit first parses the input SQL query to
produce a query syntax tree. Under the design concept of the query engine, predicates in the
resulting syntax tree are pushed down to reduce the interaction overhead of multiple parties. For
example, the filtering conditions are pushed down so that the filtering conditions can be executed
locally on the plaintext by the data owner as early as possible without considering security issues.
In this way, the amount of data is reduced in subsequent query operations involving multiple
data owners, and the overhead of subsequent multi-party interactions decreases. Figure 4 shows
the flow and effect of the parsing unit with a concrete example: pushing down the operations can
lower the amount of data and computation overhead involved in secure multi-party interactions.

SM
C
 Interaction

SM
C
 Interaction

Parsing Optimization

Figure 4 Workflow of parsing unit in this system

4.3 Design of rewriting unit
A rewriting unit is designed to take over the output of the previous parsing unit and generate

a query execution plan on the basis of the syntax tree. Since the query operation of some nodes
in the syntax tree requires the participation of multiple data owners, the data privacy of all parties
should be considered simultaneously. Therefore, the rewriting unit mainly rewrites the query
operation involving multiple parties into a federated query operation to protect the data privacy
of multiple parties according to the design concept of the query engine, namely, reducing the
interaction overhead of multiple parties. The following example is the classical database join
operation JOIN, which introduces the rewriting unit design.

(1) Federated JOIN query operation
Since the underlying multi-party database storage of the system is transparent to users, users

can initiate a conventional join query operation L.c ⋊⋉condition R.c according to the unified
view provided by the central server. In other words, tuples in the table L and table R are joined
by referring to the data column c that meets the condition. The rewriting unit should be oriented
to the underlying multiple data owners, and the tables L and R considering views of users are

Li SY, et al. A secure multi-party data federation system 117

scattered among multiple parties. Since multiple data owners hold parts of tables L and R,
when the JOIN operation is jointly computed by multiple parties, any two of them are required
to perform the JOIN operation once. Then, all the intermediate results of joins are aggregated to
obtain the final join result. Thus, the global result of the federated query operation is obtained
by aggregating the results of multiple two-party joins. Using one of the two joins as an example,
we present how to rewrite it in a data federation scenario in the next paragraph.

(2) Two-party JOIN query operation
When two data owners make a secure join to protect data privacy, the data ownersP1 andP2

hold a part of the data L1 and R2 in the table L and table R, respectively. If the entire data tables
L1 and R2 are joined directly as input to a secure protocol, it will result in a significant overhead
of interactions between the two parties[5]. Therefore, according to the design concept of the
query engine, this rewriting unit rewrites the JOIN operation flow to reduce the communication
traffic between the two parties considering the high overhead. Firstly, the data column c is
ordered in plaintext on the data owner’s side, and then the value of the i-throw of c in L1 is
compared with the value of the j-th row of c in R2 in a secure way to determine whether the
condition is satisfied. In this way, we can determine whether the tuples in the i-throw and j-th
row of the two data tables need to be joined without revealing the data values to each other. If
the secure comparison result meets the condition, the tuples can be sent to the central server,
and the central server can join the two tuples; if the secure comparison result does not meet the
condition, the two tuples do not need to be joined. We can repeat the above steps to compare
the value of the i-throw of c in L1 with the other rows of c in R2 until all the values of c in L1

are compared with those of R2.
The above process is designed to reduce the interaction overhead between two parties,

and thus only one data column of the data table is involved in the computation of the secure
comparison protocol between two data owners. The system is based on the idea of transferability
to further reduce the interaction overhead of the joins between two parties. Since the data columns
of the JOIN operation are ordered locally by the two parties, the value of the i-throw of the data
column c in the data table L1 can be located by a binary search without traversing all values
of the data column c in the data table R2. The binary search lessens the number of secure
comparisons that need to be made between the two joins, thus reducing the interaction overhead.

(3) Global JOIN query operation
The above rewriting process can safely complete the JOIN operation between two data

owners; however, in a federated join query, every data owner Pi holds data tables Li and Ri,
and hence there is still a need to design how to obtain the global join operation result from the
aggregation of multiple two-party joins. This unit is also based on the idea of transferability to
reduce the communication traffic among multiple parties in the aggregation process. In the case
of equi-joins, when the data owner P1 makes a secure join with both the data owner P2 and the
data owner P3, the data owner P1 can infer that both P2 and P3 have the intersection part from
the intersection of the two joins. Then, the secure join operation between P2 and P3 does not
need to repeat the secure comparison of this part. By organizing the JOIN operations among
multiple parties in this way, the amount of computation involved in the secure join between the
two parties is reduced and the interaction overhead is cut down.

4.4 Design of execution unit
An execution unit takes over the federated query plan developed in the previous unit and

schedules each data owner to execute the plan. Each federated query operation in the plan
is rewritten in the previous rewriting unit, and these federated query operations are executed
by calling the corresponding secure multi-party basic operators in the operator library. For

118 International Journal of Software and Informatics, 2022, 12(1)

example, for a federated JOIN query operation, a comparison operator is called to determine
whether the join constraints are met; for a federated SUM query operation, after each data owner
locally executes the SUM operation, a secure SUM operator is called on the resulting value to
generate the result of the federated SUM query operation.

The flow of basic operators and query operations designed by the above unit has good
parallelizability. In this execution unit, each data owner is scheduled to parallelize some of
the computation operations in the corresponding process to improve the operational efficiency
of the system. For the execution of basic operators, since operators in a multi-party security
operator library are designed in view of a secret sharing framework, they are computed in groups
according to the idea of divide and conquer. Therefore, the computation of operators can be
executed in parallel in groups. For the federated aggregation query operation, each data owner
first performs the corresponding database query operation locally, thus this local computation
can be executed in parallel by all parties, and then each party calls the operator from the library
to aggregate the intermediate results from multiple parties, which can be parallelized with the
aforementioned basic operator. For the federated join query operation, since the global join result
consists of multiple two-party join results, each two-party execution of the JOIN operation can
be parallelized on a two-party basis.

4.5 Security analysis on query operations
This secure multi-party data federation system is developed for data federation; the original

data of each data owner must be protected locally, namely that each party can know the result after
executing the query operation process but cannot know the original data of other parties. The
security analysis on basic operators, aggregation operations, and join operations is as follows.

Security analysis on basic operators: The secure multi-party operator library of this
system is based on the secure multi-party computation technology of secret sharing. According
to the definition of secure multi-party computation, such operators are employed to ensure that
each party does not obtain the result of the function f(x1, x2, · · · , xn)without the collaboration
of other parties xi

[11]. Therefore, operations in the secure multi-party operator library of this
system can ensure that the data of each data owner is not revealed to other parties, and meanwhile,
the computational results are obtained by completing the computation requirements. In this way,
the security requirements of the data federation scenario are fulfilled.

Security analysis on federated aggregation query operations: This system supports
aggregation operations, and the computation process of such operations is comprised of local
computations and multi-party interactions. The former is realized by each data owner on their
own data, involving no security issues of data privacy leakage. The latter directly calls a basic
operator to perform an aggregation calculation for the final aggregation result, and thus its
security is guaranteed by the basic operator, which has been analyzed in the previous paragraph.

Security analysis on federated join query operations: This system supports join
operations. The computation process is mainly divided into two-party joins of all parties,
which are then aggregated to obtain global join results. When two parties are joined, a secure
comparison operator is first called on the data columns based on the join to determine whether
the join conditions are met, and in this determination process, the secure comparison operator
ensures that both parties are informed of the result without knowing each other’s data. Then,
both parties send the eligible tuples to the central server for the join in light of the determination
result, and these tuples are not protected as join results, which complies with the system security
requirements. When aggregating the global join results, the aggregation process does not need
to be protected because the computation calls only the join results obtained by each party, and
those join results are included in the final global join results. When the federated join operation

Li SY, et al. A secure multi-party data federation system 119

is followed by the aggregation operation, instead of sending tuples to the central server for the
join, each party will perform the federated aggregation operation directly on the tuple that is
determined to be eligible for the join to avoid join result leakage. In summary, the federated join
query operation meets the system security requirements.

5 System Adaptation and Interactive Interface
5.1 System adaptation

The proposed system provides interfaces for different database systems and different data
table schemas to address the problem of data heterogeneity among multiple data owners. For
different database systems of the underlying data owners, this system has been adapted to the
operation interface of various database systems such as MySQL, openGauss, SQL Server, and
PostgreSQL. For various data table schemas of the underlying data owners, this system provides
the upload interface of a data table schema for each data owner in the view building step, and
each party transmits the data schema shared by the data federation to the central server through
the interface. The central server builds a unified data view for users according to the data
schema of each party and constructs a mapping relationship between the unified view and the
data schema of each party to shield the users from the underlying data heterogeneity.

5.2 Interactive interface
The proposed system provides a user-friendly graphical interface. The interface has two

main functions: one is to show a unified data view of the data federation to users for queries based
on this data view, and the other is to provide users with query operation functions. This system
supports SQL statement queries, and thus users can enter SQL queries in the corresponding
operation box to make a joint query of multiple data (Figure 5).

Figure 5 Interactive interface of proposed system

6 System Performance Verification
6.1 Experimental setup
6.1.1 Experimental environment

This experiment requires a federation scenario, where multiple machines simulate the
participation of multiple data owners. Each machine is equipped with one CPU (model: Intel®

120 International Journal of Software and Informatics, 2022, 12(1)

Xeon® Platinum 8269CY CPU T 3.10 GHz) and 32 GB of memory, and the operating system is
Ubuntu 18.04.5 LTS (Bionic Beaver). Specifically, one machine was chosen to run the central
server process, and each of the other machines ran a data ownership process and built its database
for each data owner. During the execution of the query operation, the processes collaborated with
each other to complete the computation. Since different data participants are located on different
machines, the data of each party is physically decentralized for storage. Unlike the simulation
of a federation scenario on a single machine by means of virtual machines, the decentralized
storage of data makes it easier to verify that “no data leaves the original data owner” and the
experimental setup is more realistic.

6.1.2 Test data

The test dataset chosen for the experiment is TPC Benchmark™H (TPC-H)[12]. This dataset
consists of data tables containing information on various products. We chose 1 GB of data to
construct the database of each data owner. The TPC-H dataset is widely used in the database
system performance test and analysis[13], and its experimental results are useful for reference.

6.1.3 Evaluation index

The execution time of the query statements was used as the quantitative evaluation index of
the system operation efficiency in the experiment.

6.1.4 Comparison system

The two most representative data federation systems that support multi-party security, i.e.,
SMCQL[5] and Conclave[6], were selected for this experiment. In addition, the secure multi-party
computation tool library, MP-SPDZ[9], was adopted as the comparison system to further verify
the efficiency and scalability of the proposed system.

6.2 System performance comparison
Firstly, we analyzed the performance difference between the proposed system and the repre-

sentative secure multi-party data federation systems SMCQL and Conclave. Specifically, single
query operations and compound query statements were compared to examine the application
performance of the system comprehensively.

6.2.1 Performance comparison of single query operation system

The maximum number of data owners supported by SMCQL and Conclave systems is two
and three, respectively, and with appropriate modifications, SMCQL can support single query
operations on up to three data owners. Therefore, a performance comparison for the single query
operations on SUM, AVG, MIN/MAX, equi-join, and θ-join is shown in Figure 6 in the case of
three participants, where the left table size for the JOIN operation is 200,000 rows. The table
size refers to the sum of the table sizes of all data owners involved in the JOIN operation.

The experimental comparison results show that the time consumed for the JOIN operation
increases significantly with the increase in the size of the running data, while the time consumed
for SUM, AVG, and MIN/MAX operations increases slightly. However, our implemented system
can always maintain optimal performance. The time overhead is only 0.3% and 29.7% of that
of SMCQL and Conclave, respectively.

6.2.2 System performance comparison of compound query statements

A compound query statement is a combination of single query operations. Due to the
complexity and implementation issues of the SMCQL system, it is not easy to directly modify
it to support multi-party scenarios with more than three data owners[13]. Therefore, this section

Li SY, et al. A secure multi-party data federation system 121

focuses on the comparison of the proposed system with Conclave. The compound query state-
ments based on the TPC-H dataset are shown in Table 1 below, and the execution performance
comparison between the two systems is shown in Figure 7.

SMCQL-ObliM
Conclave
Ours

550

500

450

400

350

300

R
un
ni
ng
 ti
m
e
(m
s)

Table size of query operation (104)

(a) SUM

SMCQL-ObliM
Conclave
Ours

550

500

450

400

350

300

R
un
ni
ng
 ti
m
e
(m
s)

Table size of query operation (104)

(b) AVG

SMCQL-ObliM
Conclave
Ours

550

500

450

400

350

300

R
un
ni
ng
 ti
m
e
(m
s)

Table size of query operation (104)

(c) MIN

SMCQL-ObliM
Conclave
Ours

550

500

450

400

350

300

R
un
ni
ng
 ti
m
e
(m
s)

Table size of query operation (104)

(d) MAX

SMCQL-ObliM
Conclave
Ours

R
un
ni
ng
 ti
m
e
(s
)

Right table size of JOIN query operation
250 500 1,000 1,500 2,000

104

103

102

(e) Equi-join

SMCQL-ObliM
Conclave
Ours

R
un
ni
ng
 ti
m
e
(s
)

Right table size of JOIN query operation
250 500 1,000 1,500 2,000

104

103

102

(f) θ-join

Figure 6 Comparison of single query operations amongproposed system, SMCQL, and Conclave

Table 1 SQLquery based on TPC-H dataset
SELECT SUM(L_extended price) / 7.0 asavg_yearly
FROM Lineitem, Part

WHERE P_partkey = L_partkey
and P_brand = ‘Brand#55’
and P_container = ‘MED DRUM’;

122 International Journal of Software and Informatics, 2022, 12(1)

The experimental results show that the efficiency of the proposed system is significantly
better than that of Conclave, with an efficiency advantage of up to 3.75 times.

In summary, the proposed system achieves the best performance among data federation
systems that can support multi-party security. Furthermore, another advantage of this system is
that it can support data query operations with more than three parties, which will be verified in
the following experiments.

100

80

60

40

20

0

R
un
ni
ng
 ti
m
e
(s
)

Conclave
Ours

750 1,500 3,000 4,500 6,000
Right table size of JOIN operation

Figure 7 Comparison of compound statement query between our proposed system and MP-SPDZ (left
table size is 200,000 rows)

6.3 Multi-party performance analysis
Both SMCQL and Conclave systems can no longer be used when there are more than three

data owners. For this reason, the secure multi-party computation tool library MP-SPDZ was
adopted[9]. As a comparison system, MP-SPDZ can achieve secure algebraic operations that
support multiple parties and can be used as a comparison object for the basic operators of the
proposed system. The performance of query operations of the proposed system in the multi-
party case was further verified experimentally. The SUM and AVG operations are the simple
superposition of basic operators, and thus we focus on the performance of equi-join and θ-join
operations.

6.3.1 Multi-party performance analysis on JOIN operations

This section verifies experimentally the performance of the system’s join operations in
multi-party scenarios. The variation of time overhead for equi-join and θ-join operations of the
proposed system with the increasing number of data owners is shown in Figure 8.

It can be seen that the proposed system remains relatively fast with a different number
of data owners and can effectively protect data security with little difference in computational
overhead from the direct plaintext.

6.3.2 Multi-party performance analysis on basic operators

The performance comparison of basic operators of the proposed system for addition, mul-
tiplication, and comparison operations with MP-SPDZ and plaintext computation is shown in
Figure 9. It is easy to convert between subtraction and addition and between division and
multiplication, and thus the relevant comparison is omitted.

It can be seen that the time overhead increases as the number of data participants grows in
the performance comparison of the three basic operators. For multiplication and comparison
operators, the execution efficiency of the proposed system is always faster than that of MP-SPDZ

Li SY, et al. A secure multi-party data federation system 123

MS-SPDZ

R
un
ni
ng
 ti
m
e
(s
)

Ours
Plaintext

105

104

103

102

101

Number of data owners
3 4 5 6 7

(a) Equi-join

MS-SPDZ

R
un
ni
ng
 ti
m
e
(s
)

Ours
Plaintext104

103

102

101

Number of data owners
3 4 5 6 7

(b) θ-join

Figure 8 Comparison of two join query modes among proposed system, MP-SPDZ, and plaintext com-
putation

30

25

20

15

10

5

00

MS-SPDZ

R
un
ni
ng
 ti
m
e
(m
s)

Ours
Plaintext

Number of data owners
3 4 5 6 7

(a) Addition operator

250

200

150

100

50

0

MS-SPDZ

R
un
ni
ng
 ti
m
e
(m
s)

Ours
Plaintext

Number of data owners
3 4 5 6 7

(b) Multiplication operator

400

300

200

100

0

MS-SPDZ

R
un
ni
ng
 ti
m
e
(m
s)

Ours
Plaintext

Number of data owners
3 4 5 6 7

(c) Comparison operator

Figure 9 Comparison of operator efficiency among MP-SPDZ, plaintext, and proposed secure multi-party
operator library

and is closer to that of plaintext computation. For the addition operator, the efficiency of the
proposed system is slightly slower than MP-SPDZ, but the difference is small. Therefore, this
system can fulfill the data security protection requirement with less time overhead.

In summary, the proposed system maintains better performance even when the number of
data owners rises. This indicates that the system can not only outperform the existing SMCQL
and Conclave systems in terms of execution efficiency but also significantly outstrip the existing
systems in terms of scalability.

124 International Journal of Software and Informatics, 2022, 12(1)

7 Related Work
The system implemented in this paper is a secure multi-party data federation system in

a federation scenario. Unlike the federated database concept that emerged in the 1980s, such
systems center on database heterogeneity and aim to achieve collaboration among heterogeneous
database systems. In recent years, the concept of a secure multi-party database system in a
federation scenario has emerged with the enhancement of user data security protection, which
is also called a data federation system. Such systems not only support the collaboration of
heterogeneous databases but also emphasize data security protection in multi-party collaboration,
and they rely on secure multi-party computation technology to achieve data security protection.
The federated database technology, secure multi-party data federation technology, and secure
multi-party computation technology are described in this section.

7.1 Federated database technology
The concept of a federated database system[14] was introduced in the 1980s, which is not a

physical database but a middleware between underlying multiple databases and upper users. As a
virtual database running upon each database, it can screen the heterogeneity between underlying
multiple databases and behave as a unified database for users.

Multiple heterogeneous databases at the bottom of the federation database system are
independent of each other, but they also collaborate. Unlike traditional distributed databases,
federated databases need to work together to store, query, and modify data. The underlying
databases of the federation database system are autonomous to some extent, as they operate
locally and independently. The application background of a federated database system is derived
from the data management upon the acquisition of a company. For example, when Company
A acquires Company B, the data of Company B needs to be managed by Company A, but this
process may be hampered by the incompatibility of the two companies’ databases. Federated
database technology can solve this problem. By building a federated database management
system and connecting Company B’s database system to it, Company A only needs to process
the data jointly with Company B through the federated database system rather than migrate all of
Company B’s data to its own database system. The DB2 data management system[15] introduced
by IBM supports this federated database.

The concept of federation in such federated database technology implies the characteristics
of multi-party collaboration and heterogeneous autonomy of all parties; however, it does not
involve the data privacy and security issues in multi-party data, and thus it is considerably
different from the federated scenarios and secure multi-party database concept discussed in this
paper. The federation scenario and its related research are described in Section 7.2.

7.2 Secure multi-party data federation technology
With the increasing requirements for user data privacy protection worldwide, the traditional

approach of sharing data directly without considering data security in a federation database is
no longer applicable. Under this scenario, secure multi-party data federation technologies have
emerged to meet the challenge of data security. Such systems enable multiple data owners to
cooperate in query operations while ensuring that sensitive data involved in the computation are
not leaked, thus protecting data security.

In 2017, Bater et al. proposed the SMCQL data federation system[5] that can support
secure querying on two data owners’ databases. The SMCQL system divides the access rights
of each column of a data table into public and private ones. Different access rights correspond
to different shared security requirements. For example, the values of public columns can be
shared by default, and hence if the operation in the query only involves public column data, it

Li SY, et al. A secure multi-party data federation system 125

can be calculated directly in plaintext, the same way as the traditional database calculation. If
the query involves private columns, it is necessary to ensure that the original private data does
not leave the original data owner during the query operation. Thus, the security requirement of
no data leakage is achieved. Although this system can guarantee the security of private data, it
has a huge runtime overhead due to security protection and can only support two data owners.
Its efficiency and scalability of the participant size limit the application of this system.

In 2019, Volgushev et al. developed the Conclave data federation system[6], which proposes
query optimizations such as the push up, push down, and hybrid protocol to control the time
overhead caused by the security protection. The core idea of the optimization is to complete
the computation of query operations within the database of the owner as much as possible, so
as to reduce data interactions between data owners and further reduce the time overhead caused
by security protection. This system is more efficient than SMCQL, but it supports at most three
data owners and has limited application scenarios.

At present, the idea of implementing secure operations in the data federation system is
basically the same, i.e., converting SQL statements into security operation primitives and then
executing them. Such security operation primitives are based on secure multi-party computation
technology that can realize the joint computation of multiple parties without leaking sensitive
data to each other, which complies with the security requirements of data federation. The related
work on secure multi-party computation technology is described below.

7.3 Secure multi-party computation technology
Secure multi-party computation is a collection of cryptographic protocols proposed to

solve the problem of secure computation in the development of modern cryptography. It
solves the problem of joint computation of a function among a number of parties with mutual
distrust, which was first introduced by the millionaire problem proposed by Andrew Chi-Chih
Yao in 1982[11]. The focus in secure multi-party computation can be formalized as follows: n

computation participants hold data x1, x2, · · · , xn, respectively, and the purpose of the protocol
is to compute a pre-agreed function y1, y2, . . . , yn = f(x1, x2, · · · , xn) with the secret data of
each party, where any party can obtain the corresponding result yi but cannot obtain any other
information. Two common technologies, namely Garbled Circuit (GC)[16] and secret sharing[17]

can solve this problem. The details of the two technologies are described as follows.

7.3.1 Garbled circuit

The GC technology can convert a computational function into a Boolean circuit and cryp-
tographically garbles the truth table for computation, which is a general framework for solving
secure computation problems between two parties. This technology can be applied to verifiable
computation[18], Key-Dependent Message (KDM) security[19], etc. It can also be widely used
in real life for medical diagnosis[20], auction mechanism[21], information retrieval[22], etc. to
protect privacy. This model was first proposed by Turing Award winner Andrew Chi-Chih Yao
in 1986 under the semi-honest model of Yao’s circuit[23], which was used to solve the millionaire
problem. The main work of Yao’s circuit is to transform an arbitrary function into a Boolean
circuit with two participants, namely Alice and Bob. Alice generates the truth table according
to the logic circuit and then performs two-fold symmetric encryption and decryption operations
for each circuit gate with the string corresponding to the cable as the key, and thus the garble
decipher text table is generated; Bob calls the Oblivious Transfer (OT) protocol[24] to obtain the
string form of the input and attempts to decrypt the garbled cipher text table line by line with
this string and the string sent by Alice as the key. Recently, GC-based tool libraries ObliVM[3]

and Obliv-C[4] were proposed by Chang Liu and Samee Zahur, respectively. Those tool libraries
build a developer-oriented high-level programming language that compiles the template code

126 International Journal of Software and Informatics, 2022, 12(1)

written by the developer directly into a GC, thus greatly reducing the development efforts. In
fact, the aforementioned SMCQL system uses ObliVM to build GCs for secure computation,
while Conclave partially uses Obliv-C. However, those two tool libraries with GCs as secure
back ends perform slightly poorly in terms of computational efficiency; for example, the ObliVM
tool library can only load less than 100 Kb of data input[13].

7.3.2 Secret sharing

Secret sharing is another important approach in secure multi-party computation, which is
based on the idea of splitting a secret into multiple parts (sub-secrets) and then sending each
part to the corresponding participant. In this way, only a subset of the authorized participant
set can collaboratively reconstruct the original secret, while other arbitrary subsets of non-
authorized participants cannot reconstruct the original secret. In addition to secure multi-
party computation, secret sharing was originally used for secure information storage[25], key
distribution[26], access control[27], and other applications in real life, such as electronic voting[28],
copyright enforcement[29], and machine learning privacy protection[30]. Secret sharing was first
introduced by Shamir[10] and Blakley[31], who proposed the threshold secret sharing, namely
that any subset of the participant set with a size larger than a threshold can construct the original
secret. The secret sharing computation process of the Shamir model mainly uses the Lagrange
interpolation principle: firstly, a polynomial is randomly selected, and the input of the distributor
is used as the constant term of the polynomial. Then, this polynomial is used to calculate the
sub-secret distributed to each participant, and the original polynomial can be reconstructed when
the size of the participant set is larger than a specified threshold by Lagrange interpolation. In
this way, the original secret is obtained. There are also secure multi-party computation tool
libraries based on secret sharing, such as Sharemind[8] and MP-SPDZ[9]. The data federation
system Conclave uses Sharemind, but this tool library supports up to three computational parties
and is not open-sourced, which restrains its use.

8 Summary and Outlook
In this paper, we designed and implemented a federated data federation system for multi-

party security under the premise of increasingly strict data privacy protection and data sharing
requirements. The system achieves the system adaptation, secure multi-party operator library,
query engine, and interactive interface from the bottom up, which can screen underlying database
heterogeneity, provide users with a unified and friendly operation interface, and realize data
sharing under the premise of data privacy and security protection. Specifically, the work in this
paper is summarized as follows.

• We implemented the secure multi-party operator library and query engine of this system.
On the basis of the secret sharing framework, we achieved efficient and secure basic
operators including addition, subtraction, multiplication, division, and comparison. On
this basis, the query engine was built to support basic database query operations includ-
ing SUM, AVG, MIN/MAX, equi-join, and θ-join, with full consideration of multi-party
collaboration characteristics. The query engine implemented the idea of giving priority
to local operations and reducing transmission redundancy in the whole process of query
statement parsing, query plan generation, and query operation execution. This mini-
mizes data interactions between data owners, thus greatly reducing security overhead and
improving system performance.

• We implemented the system adaptation and the interactive interface. The system adapta-
tion interface is designed to screen the database heterogeneity due to multiple data owners,
while the interactive interface provides a unified SQL query interface and a graphical
interactive interface for users to facilitate the unified coordination and management of

Li SY, et al. A secure multi-party data federation system 127

the data sharing process and improve usability.
• We verified the system performance experimentally. The experimental results on the

benchmark dataset TPC-H show that, compared with the current data federation systems
SMCQL and Conclave, the proposed system can support data federation scenarios with
more than three data owners, and it shows higher efficiency in various basic query
operations and compound queries. The efficiency and scalability of this system show that
it has higher practicality than the current mainstream data federation systems.

The future work of this system is as follows.
• We will extend the scope of the system to support further query operations. The system

is based on the idea of the basic secure multi-party computation of secret sharing, and
it implements operators such as aggregation and join, but the functions supported by the
system are limited compared with those of mature database systems. The system can be
further expanded on the basis of the existing system on views and other operations.

• We will achieve more complex data mining analysis algorithms in view of existing basic
operators. This system already supports simple query operations, but it can develop more
complex data mining algorithms such as clustering and regression algorithms in light of
existing SUM and product algorithms to further explore the value contained in multiple
data while protecting privacy.

References
[1] Doan AH, Halevy A, Ives Z. Principles of Data Integration. Elsevier, 2012.
[2] Shi DY, Wang YS, Zheng PF, et al. Cross-silo federated learning-to-rank. Ruan Jian Xue Bao/Journal

of Software, 2021, 32(3): 669–688 (in Chinese with English abstract). http://www.jos.org.cn/1000-
9825/6174.htm. [doi: 10.13328/j.cnki.jos.006174]

[3] Liu C, Wang XS, Nayak K, et al. Oblivm: A programming framework for secure computation. Proc.
of the 2015 IEEE Symposium on Security and Privacy. IEEE, 2015. 359–376.

[4] Zahur S, Evans D. Obliv-C: A language for extensible data-oblivious computation. IACR Cryptology
ePrint Archive, 2015: 1153.

[5] Bater J, Elliott G, Eggen C, et al. SMCQL: Secure query processing for private data networks. Proc.
of the 2017 VLDB Endowment. 2017, 10(6): 673–684.

[6] Volgushev N, Schwarzkopf M, Getchell B, et al. Conclave: Secure multi-party computation on big
data. Proc. of the 14th EuroSys Conf. ACM,2019. 1–18.

[7] Hastings M, Hemenway B, Noble D, et al. Sok: General purpose compilers for secure multi-party
computation. Proc. of the 2019 IEEE Symp. on Security and Privacy. IEEE, 2019. 1220–1237.

[8] Bogdanov D, Laur S, Willemson J. Sharemind: A framework for fast privacy-preserving computations.
Proc. of the 2008 European Symp. on Research in Computer Security. Berlin, Heidelberg: Springer,
2008. 192–206.

[9] Keller M. MP-SPDZ: A versatile framework for multi-party computation. Proc. of the 2020 ACM
SIGSAC Conf. on Computer and Communications Security. ACM, 2020. 1575–1590.

[10] Shamir A. How to share a secret. Communications of the ACM, 1979, 22(11): 612–613.
[11] Yao AC. Protocols for secure computations. Proc. of the 23rd Annual Symp. on Foundations of

Computer Science. IEEE, 1982. 160–164.
[12] http://www.tpc.org/tpch/
[13] Wang Y, Yi K. Secure Yannakakis: Join-aggregate queries over private data. Proc. of the 2021 Int’l

Conf. on Management of Data. ACM, 2021. 1969–1981.
[14] Sheth AP, Larson JA. Federated database systems for managing distributed, heterogeneous, and

autonomous databases. ACM Computing Surveys, 1990, 22(3): 183–236.
[15] Josifovski V, Schwarz P, Haas L, et al. Garlic: A new flavor of federated query processing for DB2.

Proc. of the 2002 ACM SIGMOD Int’l Conf. on Management of Data. ACM, 2002. 524–532.
[16] Bellare M, Hoang VT, Rogaway P. Foundations of garbled circuits. Proc. of the 2012 ACM Conf. on

Computer and Communications Security. 2012. 784–796.

http://www.jos.org.cn/1000-9825/6174.htm
http://www.jos.org.cn/1000-9825/6174.htm
http://www.tpc.org/tpch/

128 International Journal of Software and Informatics, 2022, 12(1)

[17] Beimel A. Secret-sharing schemes: A survey. Proc. of the 2011 Int’l Conf. on Coding and Cryptology.
Berlin, Heidelberg: Springer, 2011. 11–46.

[18] Setty S, Vu V, Panpalia N, et al. Taking proof-based verified computation a few steps closer to
practicality. Proc. of the 21st USENIX Security Symposium. 2012. 253–268.

[19] Applebaum B. Key-dependent message security: Generic amplification and completeness. Proc. of
the 2011 Annual Int’l Conf. on the Theory and Applications of Cryptographic Techniques. Berlin,
Heidelberg: Springer, 2011. 527–546.

[20] Chen F, Cheng S, Mohammed N, et al. Precise: Privacy-preserving cloud-assisted quality improvement
service in healthcare. Proc. of the 8th Int’l Conf. on Systems Biology. IEEE, 2014. 176–183.

[21] Kolesnikov V, Sadeghi AR, Schneider T. Improved garbled circuit building blocks and applications to
auctions and computing minima. Proc. of the 2009 Int’l Conf. on Cryptology and Network Security.
Berlin, Heidelberg: Springer, 2009. 1–20.

[22] Kim HJ, Kim HI, Chang JW. A privacy-preserving kNN classification algorithm using Yao’s garbled
circuit on cloud computing. Proc. of the 2017 IEEE 10th Int’l Conf. on Cloud Computing. IEEE, 2017.
766–769.

[23] Yao ACC. How to generate and exchange secrets. Proc. of the 27th Annual Symp. on Foundations of
Computer Science. IEEE, 1986. 162–167.

[24] Kilian J. Founding crytpography on oblivious transfer. Proc. of the 20th Annual ACM Symp. on
Theory of Computing. 1988. 20–31.

[25] Huang W, Langberg M, Kliewer J, et al. Communication efficient secret sharing. IEEE Trans. on
Information Theory, 2016, 62(12): 7195–7206.

[26] D’Souza R, Jao D, Mironov I, et al. Publicly verifiable secret sharing for cloud-based key management.
Proc. of the 2011 Int’l Conf. on Cryptology in India. Berlin, Heidelberg: Springer, 2011. 290–309.

[27] Naor M, Wool A. Access control and signatures via quorum secret sharing. IEEE Trans. on Parallel
and Distributed Systems, 1998, 9(9): 909–922.

[28] Schoenmakers B. A simple publicly verifiable secret sharing scheme and its application to electronic
voting. Proc. of the 1999 Annual Int’l Cryptology Conf. Berlin, Heidelberg: Springer, 1999. 148–164.

[29] Zhu Y, Yang YT, Sun ZW, et al. Ownership proofs of digital works based on secure multiparty
computation. Ruan Jian Xue Bao/Journal of Software, 2006, 17(1): 157–166 (in Chinese with English
abstract). http://www.jos.org.cn/1000-9825/17/157.htm. [doi: 10.1360/jos170157]

[30] Tan ZW, Zhang LF. Survey on privacy preserving techniques for machine learning. Ruan Jian Xue
Bao/Journal of Software, 2020, 31(7): 2127–2156 (in Chinese with English abstract). http://www.jos.
org.cn/1000-9825/6052.htm. [doi: 10.13328/j.cnki.jos.006052]

[31] Blakley GR. Safeguarding cryptographic keys. Proc. of the Int’l Workshop on Managing Requirements
Knowledge. IEEE Computer Society, 1979. 313–313.

Shuyuan Li, Ph.D. candidate.
Her research interests include big
data analysis and processing, as
well as privacy protection.

Dingyuan Shi, master’s can-
didate. His research interests
include federal learning, spatio-
temporal big data analysis and
processing, crowd sourcing
computing, swarm intelligence,
and privacy protection.

Yudian Ji, Ph.D., engineer. His
research interests include spatio-
temporal data analysis and
processing, data compression,
and data mining.

Wangdong Liao, master’s
candidate. His research interests
include big data analysis and
processing, as well as privacy
protection.

http://www.jos.org.cn/1000-9825/17/157.htm
http://www.jos.org.cn/1000-9825/6052.htm
http://www.jos.org.cn/1000-9825/6052.htm

Li SY, et al. A secure multi-party data federation system 129

LipengZhang, master’s candidate.
His research interests include
federated databases and privacy
protection.

Ke Xu, professor, Ph.D.
supervisor. His research
interests include algorithms and
artificial intelligence.

Yongxin Tong, Ph.D.,
professor, Ph.D. supervisor,
senior member of CCF. His
research interests include federal
learning, spatio-temporal big
data analysis and processing,
crowd sourcing computing,
swarm intelligence, and privacy
protection.

	1 Background
	2 System Overview
	2.1 System architecture
	2.2 System workflow

	3 Secure Multi-party Operator Library
	3.1 Framework of operator library
	3.2 Operator execution flow

	4 Query Engine
	4.1 Design principles
	4.2 Design of parsing unit
	4.3 Design of rewriting unit
	4.4 Design of execution unit
	4.5 Security analysis on query operations

	5 System Adaptation and Interactive Interface
	5.1 System adaptation
	5.2 Interactive interface

	6 System Performance Verification
	6.1 Experimental setup
	6.1.1 Experimental environment
	6.1.2 Test data
	6.1.3 Evaluation index
	6.1.4 Comparison system

	6.2 System performance comparison
	6.2.1 Performance comparison of single query operation system
	6.2.2 System performance comparison of compound query statements

	6.3 Multi-party performance analysis
	6.3.1 Multi-party performance analysis on JOIN operations
	6.3.2 Multi-party performance analysis on basic operators

	7 Related Work
	7.1 Federated database technology
	7.2 Secure multi-party data federation technology
	7.3 Secure multi-party computation technology
	7.3.1 Garbled circuit
	7.3.2 Secret sharing

	8 Summary and Outlook
	Shuyuan Li
	Dingyuan Shi
	Yudian Ji
	Wangdong Liao
	Lipeng Zhang
	Ke Xu
	Yongxin Tong

