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ABSTRACT

Path planning underpins various applications such as transportation, logistics, and
robotics. Conventionally, path planning is formulated with explicit optimization
objectives such as distance or time. However, real-world data reveals that user
intentions are hard-to-model, suggesting a need for data-driven path planning that
implicitly incorporates the complex user intentions. In this paper, we propose GDP,
a diffusion-based model for end-to-end data-driven path planning. It effectively
learns path patterns via a novel diffusion process that incorporates constraints from
road networks, and plans paths as conditional path generation given the origin and
destination as prior evidence. GDP is the first solution that bypasses the traditional
search-based frameworks, a long-standing performance bottleneck in path planning.
We validate the efficacy of GDP on two real-world datasets. Our GDP beats strong
baselines by 14.2% ∼ 43.5% and achieves state-of-the-art performances.

1 INTRODUCTION

Path planning identifies an optimal sequence of vertices that forms a path between the given origin
and destination in a road network graph. It underpins applications across a wide spectrum of fields,
including transportation, logistics, emergency services, and robotics. Traditionally, path planning is
framed as a combinatorial optimization problem with well-defined objectives, such as minimizing the
total travel distance or time. Established search-based algorithms like A* or Dijkstra’s algorithm
Hart et al. (1968); Dijkstra (1959) are then employed to search a path on the road network graph,
where each edge is assigned a specific cost that reflects the objective in question.

However, data from real-world applications reveals that many users opt for paths that are neither
the shortest nor the fastest Quercia et al. (2014). This divergence suggests the complexity to model
the user intentions in path planning via the conventional search-based framework under explicit
objectives. Such complexity is mainly because the objectives often incorporate numerous variables
that are not easily modeled in closed form. For example, users might prioritize scenic paths over
shorter ones for leisure drives Ceikute & Jensen (2013). Another possible reason is that the search-
based algorithms estimates the cost of a path as the summation of its composed edges, known as the
linearly accumulative cost assumption, which does not always hold. For example, since the discharge
rate of an electric vehicle battery is non-linear Szumanowski & Chang (2008), the energy cost will
be different even passing the same edge, leading to different total energy cost. Hence, there is a
need to re-examine the methodologies for path planning to better align with the complex, real-world
objectives observed in practice.

One thread of research tries to mine user intentions or objectives by generating paths as close to
those in real-world applications as possible. This has evolved from simple Markov models Baratchi
et al. (2014) to advanced sequence-to-sequence neural networks Yu et al. (2017); Wang et al. (2022b).
These models are adept at producing paths from learned distributions unconditionally. However, their
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adaptability is limited in conditional settings,e.g., path planning with given origin and destination,
since they are primarily tailored to capture the inherent distribution of path datasets.

Other efforts go beyond mere pattern recognition, leveraging these identified patterns to guide path
planning Tian et al. (2023); Fu & Lee (2021); Jain et al. (2021); Wang et al. (2022a). A prevalent
strategy is to transform the learned patterns from path data into edge weights. These weights are then
integrated into search-based algorithms like A* or Dijkstra’s algorithm Wang et al. (2019); Kong et al.
(2019); Jain et al. (2021); Wang et al. (2022a); Liu & Jiang (2022). These methods adopt various
edge weight designs Wang et al. (2022a); Jain et al. (2021); Liu et al. (2020); Wang et al. (2019);
Kong et al. (2019), yet their performance is limited by the search-based framework. Specifically,
search-based algorithms assume that the path cost is linearly accumulative, which may not hold and
could introduce bias, especially for long paths. A remedy is to avoid planning long paths exploiting
key inter-relay vertices Tian et al. (2023); Fu & Lee (2021), but the reliance on the search-based
framework remains a performance bottleneck.

In this work, we advocate an end-to-end approach to path planning. It underscores two aspects. (i) We
directly plans on the road network graph, adhering to the distribution of existing path data, instead of
relying on preset optimization goals that may fail to capture the complex, real-world user intentions.
(ii) We bypass the traditional search-based algorithms, thus eliminating the probabilistic constraints
of linear accumulative properties, which would also provide potential benefit for planning. Our
idea is to harness generative models to implicitly mine the complex user intentions from large-scale
historical path data, and to directly plan paths from the learned user intentions as a conditional
sampling problem. Specifically, we opted for a diffusion-based model for end-to-end path planning
for its flexibility and superior performance as generative models Saharia et al. (2022); Yi et al. (2023);
Ajay et al. (2023). However, designing such an end-to-end solution is non-trivial due to the following
challenges. (i) How to design a diffusion model for path generation under graph constraints? (ii)
How to enable conditional generation for path planning with given origin and destination? The graph
structure prohibits the adoption of traditional diffusion model in Euclidean space, and it also requires
extra design for graph structure capturing.

In this work, we propose a new diffusion model, termed Graph-constrained Diffusion for Planning
(GDP). It enables end-to-end path planning via conditional sampling and is also capable of uncondi-
tional path generation. Inspired by the physics of heat conduction, we devise a novel diffusion-based
unconditional path generation model that explicitly accounts for the constraints imposed by road
networks. We then exploit a tailored self-attention mechanism to transform the destination and other
spatiotemporal information into prior evidence for conditional sampling from the path generation
model. Our main contributions are threefold.

• We introduce a novel diffusion model for path generation. To the best of our knowledge,
it is the first diffusion model for generating paths while complying with graph constraints
imposed by road networks.

• We design a conditional sampling scheme to enable path planning via our diffusion model. It
enables end-to-end data-driven path planning, which eliminates the performance bottleneck
in conventional search-based frameworks.

• We validate the efficacy of our approach through experiments on two real-world datasets. Our
GDP beats strong baselines by 14.2% ∼ 43.5% and achieves state-of-the-art performances.

2 PROBLEM DEFINITION

We define a path on a road network as follows.
Definition 1 (Path). Consider an undirected graph G = ⟨V,E⟩ with vertices V and edges E. If
u, v ∈ V is adjacent, then (u, v) ∈ E. A path x is defined as a sequence of vertices (v0, v1, ..., v|x|)
where each pair of vertices are adjacent, i.e., ∀i = 0, 1, ..., |x| − 1, (vi, vi+1) ∈ E.

We assume G is connected without self-loop or parallel edges, which is reasonable for a road network.
Conventionally, path planning is formulated as the following optimization problem.
Definition 2 (Path planning). Given weight we assigned to each edge and an origin-destination pair
(OD pair) ⟨ori, dst⟩ which contains two vertices, path planning aims to find a path x = (v0, ..., v|x|)

such that v0 = ori and v|x| = dst, and the path minimizes
∑|x|−1

i=0 w(vi,vi+1).
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As explained in the introduction, explicitly assigned edge weights and preset optimization objectives
may fail to capture the complex user intentions in real-world path planning applications. Accordingly,
we formulate path planning as the following generation problem.
Definition 3 (End-to-end path planning). Given a path dataset P that contains |P| paths, we aim to
plan paths for given OD pairs, such that the planned paths follow the distribution of P .

We focus on generic path planning Jain et al. (2021); Tian et al. (2023) and will extend to personalized
path planning by integrating user profile data in future work.

Table 1 summarizes the important notations that will be used throughout this paper.

Table 1: Notations
NOTATIONS DESCRIPTION

G = ⟨V,E⟩ A graph and its vertices and edges
x, P A path and path dataset

(v0, v1, ..., v|x|) A vertex sequence of a path P
ori, dst origin and destination of path planning task
xi, vi The i-th vertex of path x
xt The diffused path at time step t
Q |V | × |V | transition probability matrix

A,D Adjacent matrix and degree matrix of a graph
M[i, j] The i-th row and j-th column element of matrix M

M[:, j]/M[i, :] The i-th row / j-th column of a matrix M
Cτ Transition probability matrix for diffusion process

p, q(·) Row vectors with length |V | indicating a categorical distribution
v One-hot row vector with length |V | indicating a vertex
v̂ Row vector indicating the estimated distribution for a vertex

Cat(·|p) A categorical random variable with distribution p
αt, βt Hyper parameters that control the diffusion scale

3 SOLUTION OVERVIEW

We solve the end-to-end path planning problem by converting it into a conditional sampling task.
Its objective is to determine the probability distribution of paths given an origin and destination,
represented as p̃(x). Then drawing a sample from this distribution yields a planned path. Following
Janner et al. (2022), the conditional sampling probability can be expressed as:

p̃(x) = pθ(x)h(x|ori, dst) (1)
where pθ(x) denotes the unconditional probability and h(x|ori, dst) represents the prior evidence.
Consequently, our solution focuses on two designs.

• How to determine the unconditional path probability, i.e., pθ(x)?
• How to incorporate the origin and destination data as prior evidence, i.e., h(x|ori, dst)?

We elaborate on the corresponding designs in the next two sections, respectively.

4 DIFFUSION-BASED UNCONDITIONAL PATH DISTRIBUTION MODELING

As mentioned in Section 3, we start with a generative model that models the path distribution,
independent of the origin and destination. Despite studies Baratchi et al. (2014); Yu et al. (2017);
Wu et al. (2017); Wang et al. (2022b) that explored various sequence-to-sequence models for path
pattern mining, we opt for the diffusion model Sohl-Dickstein et al. (2015). The reasons are two-fold.
(i) Diffusion models demonstrate superior performances in complex generation tasks Saharia et al.
(2022); Ajay et al. (2023); Yi et al. (2023). (ii) Diffusion models are more flexible to incorporate
categorical constraints such as those imposed by road networks than conventional sequence-to-
sequence models.
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4.1 PRINCIPLES AND REQUIREMENTS FOR DIFFUSION PROCESS DESIGN

To generate high-quality paths, our diffusion model directly operates on road networks by explicitly
incorporating the connectivity constraints imposed by the graph G. We draw insights from categorical
diffusion models Austin et al. (2021); Hoogeboom et al. (2021), since vertices are categorical
variables. The general framework is as below:

q(vt|vt−1) = Cat(vt|p = q(vt−1)Qt) (2)

where vt denotes a categorical value at diffusion step t, q(·) is a row vector of categorical distribution
and Qt represents the transition probability matrix. Cat(·) denotes a categorical distribution. The i-th
row and j-th column value of Qt is the transition probability from category i to j.

In generic categorical diffusion, a prevalent choice for Qt is αtI|V | + βt11
T /|V |, where I|V | is an

identity matrix with |V | rows and columns and 1 is a column vector with all elements set to 1 Austin
et al. (2021); Hoogeboom et al. (2021); Yi et al. (2023). The hyperparameters αt and βt ≡ 1− αt

modulate the forward diffusion process’s scale. Essentially, Qt slightly perturbs the original vertex’s
probability and uniformly redistributes it across other vertices. As t goes to infinity, the distribution
of q(vt) will ultimately converge to a uniform distribution.

Notably, Austin et al. (2021) highlighted the significance of designing a domain-specific transition
probability matrix. Yet, a tailored transition probability matrix for graph topology remains elusive
in existing literature, a void our research seeks to fill. In our graph-constrained situation, where
all vertices are situated in a graph space, a generic categorical diffusion process fails to capture
this structure. In fact, we hope the forward diffusion process should exhibit locality. This locality
property will condense the probability around the original vertex with smaller diffusion step t, hence
the process will capture the graph structure. Analogous to image generation, smaller t values yield
reduced covariance, keeping pixel values close to their origin. As t grows, pixel values trend towards
a normal distribution. Similarly, in our context, each “pixel” corresponds to a vertex, and we desire
the diffusion process to reflect this locality, especially for smaller t. Our goal is for the diffusion
process to spread probabilities across neighboring vertices, converging to uniformity as t approaches
infinity.

Together with commonly properties sought after in diffusion models Yi et al. (2023), the requirements
are: (i) offers a closed form for forward process, (ii) ensures a computationally feasible posterior
q(vt−1|vt, v0), (iii) makes q(vT ) independent of q(v0) for uninformed sample generation, and (iv)
exhibits locality for smaller t values.

To address these, we employ the heat conduction partial differential equation, detailed in next sections.
We first design diffusion process for vertices in graph space, then extend it to path, i.e., a sequence of
vertices.

4.2 DIFFUSION PROCESS FOR A SINGLE VERTEX

We incorporate heat conduction process to construct our diffusion process. Specifically, we view
probability as heat on graph, then use conduction process to change our probability for diffusion
process.

Heat Conduction on Graph. Considering each vertex as a point heat source, heat diffuses uniformly
across all vertices. While “diffuse” typically has a different connotation in diffusion models, in this
context, it pertains to heat conduction on the graph. Henceforth, we use “heat conduction” to avoid
confusion. The heat conduction equation is given by:

∂h

∂t
= ∆h (3)

where h is a row vector of size |V |, indicating each vertex’s heat. The Laplacian operator, ∆, for a
vertex is the sum of differences between it and its neighbors. This equation suggests a vertex’s heat
change rate depends on its heat difference with neighbors. Using the adjacency matrix A and degree
matrix D, we can express this as ∂h

∂t = h(A −D), where A is the adjacency matrix and D is a
diagonal matrix with D[i, i] representing a vertex’s degree. Solving this equation yields Chamberlain
et al. (2021):

ht = h0Ct (4)
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with transition matrix Ct = e(A−D)t. This represents heat conduction on a graph over time t.

Forward Diffusion Process. By substituting the heat of each vertex with probabilities in Equation
(4), we can derive our diffusion process as follows

q(vt|vt−1) = Cat(vt|q(vt−1)Cτ ) (5)

The matrix Cτ has several beneficial properties: (i) Cτ is a symmetric matrix i.e., CT
τ = Cτ . (ii)

Cτ1+τ2 = Cτ1Cτ2 , Ckτ = (Cτ )
k. (iii) Cτ → 11T /|V | as τ → ∞ if graph is connected. (iv)

Cτ → I as τ → 0. (v) Summation of each row or column for Cτ is 1 ∀τ > 0, if graph is connected.
The proof for these properties is provided in (App. A).

By incorporating a series of hyper parameters βt, we can derive the closed form of forward process
q(vt|v0) = Cat(vt|p = v0C̄t) (6)

where C̄t = C1C2...Ct = Cβ1
...Cβt

= C∑t
i=1 βi

. v0 is a one-hot row vector indicating the vertex.

Note that property (i) simplifies notation by omitting the transpose superscript. Property (ii) provides a
closed form for the forward process (see Eq.(6)), which fulfills requirement (i). Property (iii) satisfies
requirement (iii) because it ensures the final probability q(vT ) is a uniform distribution independent
of q(v0). Property (iv) captures the desired locality (requirement (iv)). Property (v) guarantees p(vt)
remains a valid probability distribution since the sum of v is 1. A visual representation of probability
diffusion on a graph is shown in Figure 1, where probability initially centered on one vertex disperses
across others over time.

Figure 1: Illustration for forward process of a single vertex. Warmer color means larger probabilities.

Our forward process meet the requirements (i),(ii) and (iv) as we have mentioned above. Next we
design the reverse process to meet requirement (ii). i.e., the posterior q(vt−1|vt, v0) is tractable.

Reverse Process. To derive the reverse process, our goal is to find a tractable posterior probability
distribution q(vt−1|vt, v0). Utilizing the Bayesian rule, the Markov property and symmetry property
(property (i)) of the diffusion process, we have q(vt−1|vt, v̂0) = Cat(vt−1|p ∝ vtCt ⊙ v0C̄t−1).
where⊙ denotes element-wise multiplication. When calculating the posterior q(vt−1|vt, v0), however,
we do not have the original v0. Hence we can only use the estimated v̂0 which is the estimated
distributions of v0. Thus we have

q(vt−1|vt, v̂0) = Cat(vt−1|p ∝ vtCt ⊙ v̂0C̄t−1) (7)
The detailed derivation is provided in (App. B).

4.3 DIFFUSION PROCESS FOR A PATH

We have detailed the diffusion process for individual vertices. Now, we address paths, sequences of
vertices. We differentiate between “time” in diffusion steps (subscripts) and vertex order in paths
(superscripts). For instance, xi

t denotes the i-th vertex in path x at diffusion step t. At t = 0, x0 = x
is the initial path.

For path diffusion, we can either strictly maintain vertex connectivity or treat it as contextual. We opt
against strict connectivity for two reasons. (i) Preserving connectivity without information loss is
complex. It introduces conditional probabilities like p(xi

t|xi−1
t ), complicating reverse processes and

conflicting with diffusion models’ non auto-regressive nature Janner et al. (2022). (iii) In real road
networks, many vertices have limited adjacency. Strict connectivity restricts diffusion space, making
q(xT ) overly reliant on q(x0), violating requirement (ii).

Thus, we diffuse each vertex independently. While individual vertices retain their locality in paths,
the entire path’s vertices stay close to their original positions for small t. For large t, vertices become
random, aiding sample generation.
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The forward closed form process therefore can be represented as

q(xt|x0) = Π
|x|
i=1q(x

i
t|xi

0) = ⊗
|x|
i=1Cat(xi

t|p = xi
0C̄t) (8)

As for reverse process, it can be represented as follows.

q(xt−1|xt, x̂0) = ⊗|x|
i=1Cat(xi

t−1|p ∝ xi
tCt ⊙ x̂i

0C̄t−1) (9)

where ⊗ indicates Cartesian product and |x| denotes the lengths of path x.

Note that in reverse process, each vertex distribution is not independent with each others. This is
because when estimating x̂0, we build an neural network nnθ. It takes the xt and diffusion time
step t as input (i.e., nnθ(xt, t) = pθ(x̂0|xt)), then output the estimate of q(xt−1|xt, x̂0) by Eq.(9).
This nnθ adopts a U-net structure Ronneberger et al. (2015), and its convolution together with
fully connected layers help it model dependency among vertices. The detailed design is shown in
(App. C.1).

To ensure the final path connectivity, we do not directly sample on x̂0. Instead, we view x̂0 as a
proposal and conduct a beam search. The detailed sampling process can be found at (App. C.2).

5 PATH PLANNING AS CONDITIONAL SAMPLING

As mentioned in Section 3, we are required to devise a model to calculate h(x|ori, dst). A trivial
method is simply adding the source and destination vertex information as condition to guide the
generation process. However, this method can hardly work, mainly because path planning has a strong
spatial property. So we need to build features for spatial property for better generation. Specifically,
we need to (i) build spatial features as prior evidence and (ii) integrate the prior evidence into our
unconditional sampling.

Make Spatial Features as Prior Evidence. To build spatial features as prior evidence, we design an
attention-based model seqϕ (see Figure 5). It takes the origin, destination and prefix of the current
path as input, then outputs the probability of the next vertex. Please refer to (App. D) for detailed
structure.

Sampling Process. Together with the diffusion model, we can now conduct path planning as
conditional generation (see Algorithm 3 in (App. E)). The overall steps can be summarized as below:
it (i) gets the next vertex probability based on prefix path (which contains only origins initially) by
Eq.(1) based on model nnθ and seqϕ. And (ii) samples from the probability to get the next vertex
and (iii) appends it to the prefix for next prediction till we hit the destination or reach the maximum
length restriction. The core of the above steps is the calculation of Eq.(1). The prior evidence term
h(·|ori, dst) can be calculated based on seqϕ. While for the unconditional probability term p(·),
we need to bring in the current prefix information for generation. So we first diffuse the prefix by
Eq.(8) and concatenate with a uniformly sampled sequence, then our diffusion model nnθ conduct
reverse process to denoise the whole sequence, hence get the estimated x̂0. To avoid frequent call of
the forward and reverse diffusion process, we double the length of uniformly sampled sequence for
concatenation in each iteration, hence the length of planned path will increase exponentially.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTING

Dataset. We use two real datasets city A and city B from Didi Gaia 1. Please refer to (App. F.1) for
preprocess, parameter setting and other implementation detail.

Baselines. For path planning, we choose four below algorithms as our baselines. Dijkstra’s
algorithm (DA)Dijkstra (1959) searches the shortest distance path for given OD pairs. NMLR Jain
et al. (2021) learns the distributions based on Markov property assumption and search the paths with
the largest probabilities each step. Key Segment (KS) Tian et al. (2023) detects the relay vertex for

1https://gaia.didichuxing.com
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the given OD pairs, then plan paths from origin to relay and then to the destination. Navigation API
from Amap (Navi) calls the planning API from Amap 2 to get the path.

Also, we compare with path generation algorithms to directly justify the effectiveness of our generative
model. N-gram directly estimates the transition probability p(vt|vt−1, ..., vt−n+1) by counting the
frequency. HMM Yin et al. (2018) is a hidden Markov model based algorithm which reduces state
numbers. CSSRNN Wu et al. (2017) and MTNet Wang et al. (2022b) both adopt an LSTM-based
model for better capturing long sequence pattern.

Evaluation Metrics. For planning, we use Dynamic Time Wrapping (DTW) Müller (2007) and
Longest Common Subsequence (LCS)Bergroth et al. (2000) to measure the similarity between planned
paths and the ground truth paths. A smaller DTW or a larger LCS indicates better performance.

For generation, the most commonly used metrics is Neg-Log-Likelihood (NLL) Wu et al. (2017);
Wang et al. (2022b). Apart from that, we also use Kullback-Leibler divergence w.r.t. Edge Visit
distribution (KLEV). KLEV indicates a first-order transition similarity between two datasets. By
replacing Kullback-Leibler divergence with Jensen-Shannon divergence, we analogously define
JSEV. NLL and KLEV/JSEV evaluate the performance from perspective of high-order and first-order
transition, respectively. The specific definition can be found in (App. F.1).

6.2 EVALUATION RESULTS

Table 2: Evaluations for path planning. Smaller DTW or larger LCS means better performance.

City Metrics Methods
DA NMLR KS Navi GDP (Ours)

A DTW − 274.2% −1.2% −11.1% −30.9%
LCS − 5.59% 24.1% 45.9% 80.8%

B DTW − 250.8% 1.8% −3.16% −15.9%
LCS − 9.02% 32.2% 55.9% 82.6%

Path planning evaluation. For path planning evaluation, we sample 1000 number of paths uniformly
from test datasets. Then we conduct path planning and compare the similarities(See Table 2). For
convenience we take Dijkstra’s algorithm as a benchmark, and the performance of other algorithms is
represented by the percentage improvement relative to Dijkstra’s algorithm. Please refer (App. F.2)
to for the raw results. Our GDP performs best among all other baselines (e.g., improves LCS by
80.8% and reduces DTW by 30.9% with regard to Dijkstra’s method in City A). We notice that, the
most compatible baseline is Navi, which indicating that the algorithm deployed in real industry also
adopts data-driven approaches. Also, the most recent existing method KS achieves second best in
baselines. We also find some existing methods do not out perform naive Dijkstra’s methods well.
This is probably because NMLR still adopts the Markov Property which confines the capture of
higher order relationship underlying path data.

Another important question is how our method can ensure to hit the destination. We use both test
and shuffled OD pairs for validation. The test OD pairs are directly sampled from the test dataset
our model has never seen. To generate the shuffled OD pairs, we first sample OD pairs from the test
dataset and then shuffle them. Shuffle operation adds more difficulty to our model for planning tasks,
since the shuffled OD pair distribution is different from the original test dataset, forcing our model to
use sub-level patterns for generalization. Overall, our method keeps the hit ratio from 94.2% to 99%
average, indicating its availability. Please refer to (App. F.3) for detailed discussion.

Next we present some cases of City A for illustration. Again, we use test and shuffled OD pairs. For
test OD pairs, we use test dataset as ground truth. For shuffled OD pairs, we can not get ground truth
from dataset so we call the Navi for comparison. Figure 2 provides illustrations of the planned paths
look like.

Unconditional generation evaluation. The generation comparison among all methods with respect
to all metrics are shown in Table 3. Our GDP algorithm outperforms all baselines overall datasets.
For NLL, it is shown that neural network based model (CSSRNN, MTNet and our GDP) perform
significantly better than count based model (N-gram, HMM). This is because NLL evaluates high order

2https://lbs.amap.com
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(a) Test OD Pairs, Real (b) Test OD Pairs, GDP (c) Shuffled OD Pairs,
Navi

(d) Shuffled OD Pairs,
GDP

Figure 2: Blue/red lines indicates the ground truth/planned paths.
Table 3: Evaluations for unconditional generation. Lower values means better performance.

City Metrics Methods
N-gram HMM CSSRNN MTNet GDP (Ours) GDP-

A
NLL 300.144 278.238 27.742 69.859 24.697 43.582

KLEV 7.300 6.804 7.348 6.274 5.724 7.273
JSEV 3.309 3.061 3.3325 2.795 2.518 3.295

B
NLL 319.662 302.506 27.890 83.679 23.740 47.418

KLEV 7.719 6.863 7.356 6.419 6.128 7.678
JSEV 3.521 3.092 3.337 2.869 2.724 3.500

transition probability and nerual network models are designed to capture this sequence information.
Those count-based models, however, are based on Markov property assumption, can hardly capture
high order information, leading to a poor performance. As for first order evaluation metrics (i.e.,
KLEV and JSEV), however, neural network models only slightly outperform count based baselines.
This indicates that our models can capture the long sequence information as those sequence model,
which is mainly attributed to the attention module of temporal U-net. For ablation study, we adopt
GDP-, which is built by replacing our heat conduction diffusion method with a generic categorical
diffusion (with a transition probability matrix Qt = αtI|V | + βt11

T /|V |). The degradation of
performances testify the effectiveness of our diffusion method. Other comparison between generated
and real paths can be shown in (App. F.4).

Forward and reverse process. Now we provide a case study to illustrate how our diffusion process is
working (See figure 3). We randomly pick 5000 paths from city B. In the forward process, each vertex
is gradually perturbed to other vertices. Because of the locality property of our process, when t is
small the vertices tend to stay close to original vertices. As t increases, all vertices tend to uniformly
distributed, hence the paths become out of order. In the reverse process, the estimated x̂0 gradually
reverse back to the original paths.

! = 0 ! = 5 ! = 10 ! = 100

! = 0 ! = 4 ! = 9 ! = 99

Forward Process

Reverse Process

Figure 3: The forward and reverse process for paths in city B
Other experiments such as execution efficiency are put into (App. F) due to the page limit.

7 RELATED WORK

Path Generation for Pattern Mining. Path pattern mining dates back to the 1990s, where locations
are modeled as states in Markov chain models Sutton & Barto (1998). Hierarchical hidden states can
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be used to mitigate the sparsity in the vast state space Baratchi et al. (2014), while contextual data
e.g., weather can be integrated to enhance path generation accuracy Yin et al. (2018).

To capture complex patterns, the recent approach is to combine Markov Decision Process (MDP)
with reinforcement learning. For example, location transitions can be exploited as routing actions to
optimize the MDP via value iteration Zheng & Ni (2014). A Generative Adversarial Network (GAN)
can be integrated as the reward function for further refinement Yu et al. (2017); Choi et al. (2021).

To model long paths, sequence-to-sequence (seq2seq) models have been employed. As seq2seq
models are primarily devised for language processing, the challenge is to comply with the topological
constraints of road networks. Some studies introduced a “lookup” operation, enabling recurrent
neural networks for path generation Wu et al. (2017). Others masked the final output of the probability
distribution to prevent invalid vertices Wang et al. (2022b). The status quo adopts an encoder-decoder
structure: encode the path sequence into a latent space, train a generative model on the latent vectors,
and decode the latent vectors back to paths Rao et al. (2021); Huang et al. (2019); Feng et al. (2020).

Despite extensive path generation studies for pattern mining, they generate paths unconditionally, and
are not easily extendable to conditional generation, thus limiting their applicability to path planning.

Data-driven Path Planning. Data-driven approaches can be employed to capture the hard-to-model
user intentions to improve path planning Quercia et al. (2014). Due to the difficulty to ensuring
connectivity and reaching the destination in a pure data-driven solution, existing solutions halt at
incorporating data-driven insights with traditional search-based algorithms. They differ in the edge
weight designs, e.g., negative log-likelihood Wang et al. (2022a); Jain et al. (2021), heuristics from
inverse reinforcement learning Liu et al. (2020), and neural network informed weights Wang et al.
(2019); Kong et al. (2019). Yet the search-based framework fundamentally limits the ability to capture
the non-linear, high-order dependencies in paths, especially in long paths. One remedy is to identify
key inter-relay vertices to reduce the path lengths in planning Tian et al. (2023); Fu & Lee (2021).
However, the search-based framework remains the primary performance bottleneck.

Our work falls into this thread of research, but completely breaks free from the search-based frame-
work, thus enabling an end-to-end data-driven path planning solution.

Categorical Diffusion Models. Diffusion models Sohl-Dickstein et al. (2015) prove effective in
complex generation tasks across various domains, including computer vision Saharia et al. (2022),
chemistry Yi et al. (2023), and robotics planning Ajay et al. (2023). Many interesting diffusion-based
planner such as Carvalho et al. (2023)) happens in Euclidean space and are not suitable in our graph
space. Our work is inspired by the advances in categorical diffusion models Austin et al. (2021);
Hoogeboom et al. (2021), where they enables diffusion process for categorical values. However, they
do not easily adapt to graph constraints.

Our work is most related to Zhu et al. (2023), where a diffusion model is applied to generate GPS-
coordinate trajectories. Since the GPS coordinates represent numerical values in a two-dimensional
Euclidean space rather than graph space. In planning task, however, we are required to output a
path on road network graph since the post-process of navigation will integrate other information like
lanes, traffic lights and speed limitation into the path. These information is usually organized by road
segments (rather than coordinates) Wang et al. (2018) and a path on graph will help easily fetch them.

To the best of our knowledge, we are the first to generate paths with explicit graph constraints using
diffusion models.

8 CONCLUSION
This paper introduces GDP, a novel diffusion-based model tailored for end-to-end path planning.
We conceptualize the path planning problem as a conditional sampling task. To effectively capture
the graph topology structure, we designed a unique diffusion process. Furthermore, by employing a
self-attention mechanism, we integrate OD pair information as conditions into the probability space,
bypassing the traditional search framework. Evaluations demonstrate GDP’s proficiency in discerning
the distributions inherent in the provided path dataset. Moreover, it can plan paths whose distributions
align closely with existing paths. We envision our approach will facilitate the path planning smarter
for modern intelligent transportation system. Besides, the post process for path legality will slightly
change the sampling distributions provided by our diffusion model. Designing an algorithm without
any post process is interesting and remains an open problem.
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APPENDIX

A PROOF FOR PROPERTIES OF MATRIX Cτ

(i) Cτ is a symmetric matrix i.e., CT
τ = Cτ .

Proof. we have Cτ = e(A−D)τ = I+
∑∞

k=1
(A−D)kτk

k! . Because both A and D is symmetric, so
(A−D)k is symmetric for any k. Thus we have Cτ is symmetric.

(ii) Cτ1+τ2 = Cτ1Cτ2 , Ckτ = (Cτ )
k.

Proof. By letting X = (A−D)τ1, Y = (A−D)τ2, we have

Cτ1+τ2 = eX+Y =

∞∑
n=0

(X + Y )n

n!
=

∞∑
n=0

n∑
k=0

Ck
nX

kY

n!

=

∞∑
n=0

n∑
k=0

XkY n−k

k!(n− k)!

(10)

We also have

Cτ1Cτ2 = eXeY = (

∞∑
n=0

Xn

n!
)(

∞∑
n=0

Y n

n!
)

= (I +X + ...)(I + Y + ...) = I + (X + Y ) + (
X2

2!
+XY + Y X +

Y 2

2!
) + ...

=

∞∑
n=0

n∑
k=0

XkY n−k

k!(n− k)!

(11)

where in the second line we rearrange all terms based on there orders, and the coefficient is same as
the binomial coefficient. By letting τ1 = τ2 = τ and mathematical induction, we have Ckτ = (Cτ )

k.

(iii) Cτ → 11T /|V | as τ →∞ if graph is connected.

Proof. We use the heat conduction equation for proof. From the physical process, the heat will
eventually evenly distributed to all vertex, so it will become 11T /|V | whatever the initial values.

(iv) Cτ → I as τ → 0.

Proof. When τ → 0, due to the continuity, Cτ → C0, i.e., I.

(v) Summation of each row or column for Cτ is 1 ∀τ > 0, if graph is connected.

Proof. Note that based on the physical meaning, we have 1T = 1TCτ ,∀τ > 0. Thus, for each
column j, we have 1T [j] = 1TCτ [:, j] ⇔

∑
i Cτ [i, j] = 1,∀j. Based on the symmetric property,

we get the summation for each row or column is always 1.

B DERIVATION FOR REVERSE PROCESS

Utilizing the Bayesian rule and the Markov property of the diffusion process, we have

q(vt−1|vt, v0) = q(vt|vt−1, v0)
q(vt−1|v0)
q(vt|v0)

= q(vt|vt−1)
q(vt−1|v0)
q(vt|v0)

∝ q(vt|vt−1)q(vt−1|v0)
= Cat(vt−1|p ∝ vtCt ⊙ v0C̄t−1)

(12)

where ⊙ denotes element-wise multiplication. Note that the original q(vt|vt−1) for any category
value k should be vtC

T
τ , where vt is one-hot row vector with vt[k] = 1. This is because Cτ [i, j] is

the probability from vertex i to j and vtC
T
τ [i, j] will be the probability into category k. We leverage

the symmetry property (property (i)) and omit the transpose for convenience. When calculating
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the posterior q(vt−1|vt, v0), however, we do not have the original v0, hence we can only use the
estimated v̂0 which is the estimated distributions of v0. Thus we have

q(vt−1|vt, v̂0) = Cat(vt−1|p ∝ vtCt ⊙ v̂0C̄t−1) (13)

C DIFFUSION MODEL DESIGN

C.1 MODEL STRUCTURE

Instead of a 2-D convolutional neural network (CNN), we employ a 1-D CNN for the temporal
dimension. We have omitted the down-sampling and up-sampling blocks from U-net, as they risk
significant information loss. Each path vertex is crucial, holding more significance than an image
pixel. Down-sampling and up-sampling can also misalign horizons, and typical solutions like linear
interpolation are not fit for categorical path data. We use the Node2Vec algorithm Grover & Leskovec
(2016) to obtain pre-trained vertex embeddings, which feed into our neural network. Our architecture
is depicted in Figure 4.

𝐱 = [𝑣!,… ,𝑣|𝐱|]

𝑡 Positional
Embedding
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Figure 4: Our neural network design.

We use Kullback-Leibler divergence between pθ(xt−1|xt, x̂0) and q(xt−1|xt,x0) as our training
loss function.

Our training algorithm is shown in Algorithm 1. Next we discuss how to use our trained model for
path generation.

Algorithm 1: Training
Input: Dataset P , model nnθ

Output: model nnθ

1 for training_steps← 1, 2, ... do
2 x0 ∼ pdata(x0)
3 t ∼ U [1, T ]
4 xt ∼ q(xt|x0) by Eq.(8)
5 pθ(x̂0|xt) = nnθ(xt, t)
6 calculate loss and update nnθ

7 end
8 return nnθ

Algorithm 2: Sampling
Input: nnθ

Output: A generated path x.

1 Sample length l from Gaussian mixture model
2 xT ∼ ⊗l

1U [1, |V |]
3 for t← T, ..., 1 do
4 x̂0 ← nnθ(xt, t)
5 sample xt−1 by Eq.(9)
6 end
7 x0 ← apply beam search via x̂0

8 return x0

Loss function design. In general, we are required to estimate pθ(xt−1|xt, x̂0) =
q(xt−1|xt, x̂0)pθ(x̂0|xt). We can minimize the Kullback-Leibler divergence between
pθ(xt−1|xt, x̂0) and q(xt−1|xt,x0), so we have

LKL = Ex0∼q(x0),t∼U [1,T ][DKL(q(xt−1|xt,x0)||pθ(xt−1|xt, x̂0))] (14)
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Some existing work Austin et al. (2021) also adds an auxiliary cross entropy loss for training.

LCE = Ex0∼q(x0),t∼U [1,T ][CE[x0, pθ(x̂0|xt)] (15)

Apart from that, we need the generated path to be connected, so we design a loss term to punish
disconnected path as below

LCN = −Ex0∼q(x0),t∼U [1,T ][

|x|−1∑
i=1

∑
v̂i
0∈V

∑
(v̂i

0,v̂
i+1
0 )∈E

pθ(v̂
i
0|xt) log pθ(v̂

i+1
0 |xt)] (16)

For the i-th vertex, the estimated probability is pθ(v̂i0|x0). If the probability is large for some vertex
at order i, we hope the model concentrates the probabilities of next (i+1)-th vertex around the
neighboring vertices of v̂i0, i.e.,

∑
(v̂i

0,v̂
i+1
0 )∈E pθ(v̂

i
0|xt) log pθ(v̂

i+1
0 |xt).

Therefore, our total loss can be defined as

L = LKL + λLCE + µLCN (17)

C.2 UNCONDITIONAL SAMPLING FOR PATH GENERATION

Our model nnθ can take a random sampled vertex sequence as input and get an estimated denoised
vertices distributions x̂0, based on which we can sample a path. There are two issues we need to
handle before utilizing the estimated x̂0 for path sampling: (i) How to specified the path sequence
length? (ii) How to maintain the path connectivity? To handle the first issue, we build an extra
Gaussian mixture model. This is a simple model which models the path length distribution. In
practice, a Gaussian mixture model with 4 components can model the length distribution well (see
Figure 8 in (App. F.4)). To handle the second issue, we adopt a beam search. Specifically, the beam
search is conducted after the reverse process when we have obtained the final estimated distribution
x̂0. Ideally, beam search operates in a breadth-first search manner. We start by sampling n vertices
from the distribution of x̂0

0 (with replacement). Subsequently, we sample (up to n) neighbors of each
vertex from the distribution x̂1

0. This process continues, and we always keep (up to) n sequences with
the highest probability in a queue. Finally, we sample from these n sequences to get the final path. In
practice, however, setting n to 1 suffices for good performance and efficient execution.

After handling the above two issues, the whole unconditional sampling process can be summarized
as follows (See Algorithm 2): (i) Sample from the Gaussian mixture model to determine the path
length (denoted as l); (ii) Generate a random vertex sequence of length l; (iii) Perform the reverse
process to denoise the random vertex sequence, obtaining the estimated distribution of x̂0; and (iv)
Apply beam search to ensure connectivity.

D PRIOR EVIDENCE MODEL DESIGN

Specifically, we first convert the origins and destinations into embeddings via Node2Vec Grover
& Leskovec (2016), then apply a multi-head self-attention to capture the sequence information.
Besides, since the planning process has a strong spatial property, we add geo-coordinations as the
vertices’ properties, based on which we build two extra spatial features: distance feature and direction
feature. For distance feature, we calculate the distance from the current vertex to the destination
based on coordinates. For direction feature, we calculate the cosine of angles between directions
towards destination from the current vertex and from its adjacent vertices. Both two features will
be fed into a fully connected layer and the output will be concatenated together with the output of
self-attention blocks. Another fully connected layer will take all hidden features as input and output
the probabilities for the next vertex. We simply adopt a cross-entropy loss to train our model and it
works well.

After get the prior evidence h(x|ori, dst) = seqϕ(ori, dst), we add the prior evidence into our
conditional sampling by Eq.(1).

E PSEUDOCODE FOR PLANNING ALGORITHM

The Pseudocode for our planning algorithm is shown in algorithm 3.
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𝐱 = [𝑜𝑟𝑖,… 𝑣!"#]

Node2Vec

…

vertex embedding
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next vertex probability
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Figure 5: Our attention-based sequence model for planning.

Algorithm 3: Planning
Input: nnθ, seqϕ, ori, dst
Output: A generated planned path x.

1 x← [ori]
2 window ← 1
3 idx← window
4 while |x| < MAX_LEN do
5 hseq ← seqϕ(ori, dst,x) // get evidence priori by sequence model
6 if idx = window then
7 xT ∼ q(xT |x) by Eq.(8) // diffuse prefix sequence
8 w← ⊗window

1 U [1, |V |] // random sequence with window size
9 x′

T ← xT ||w // concat prefix and random sampled sequence
10 pnn ← nnθ(x

′
T , T )[−window :] // get probabilities for later use

11 idx← 0
12 window ← window × 2 // increase window size exponentially
13 end
14 p̃next ← hseq ⊙ pnn[idx]
15 idx← idx+ 1
16 xnext ∼ pnext // sample next vertex
17 x← x.append(xnext)
18 if xnext = dst then break;
19 end
20 return x

F EXTENDED EXPERIMENTS

F.1 IMPLEMENTATION DETAIL

Dataset. The raw datasets contains GPS trajectories from two cities, namely city A and B. We fetch
the road network data from open street map 3. The road network is a undirected graph. Then we
apply a map matching algorithm Meert & Verbeke (2018) to bind the gps points of trajectories to the
road network. Hence we convert the gps-trajectories into path data on graph. For city A/B, the graph
of road network has 2717/2195 vertices. The number of paths are 118, 535/ 89, 339 with average
length of 26.76 / 28.61.

Parameter Setting. For diffusion process, we set T to 100 and the β linearly increase from 0.0001
to 10. As for the training process, we choose the batch size as 16 and set the learning rate to
0.005. As for the Gaussian mixture model, we set 5 components. We train our model for 20

3https://www.openstreetmap.org
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epochs on an Nvidia GeForce RTX 3090 with 24 GiB memory. Our source code can be found at
https://github.com/sdycodes/Graph-Diffusion-Planning

Evaluation Metrics. NLL is defined as

NLL(x, θ) = −
|x|−1∑
j=1

log pθ(vj+1|v1, ..., vj) (18)

KLEV is calculated as below

KLEV (P,P ′) = DKL(freq∀(vi,vi+1)∈x,∀x∈P(vi, vi+1)||freq∀(vi,vi+1)∈x,∀x∈P′(vi, vi+1)) (19)

where the freq(·) calculates all the visiting frequencies of all edges.

F.2 PLANNING EXPERIMENT DETAIL

Table 4 provides a detailed information about performances. The unit of DTW is kilometer, which
indicates the difference between planed paths and ground truth path. Smaller value indicates the
planed path is more close to the ground truth path. For example, 2.434 indicates that the algorithm
planned paths averagely have a difference to the ground truth of 2.434 kilometers. Our method can
outperform the strongest baseline (i.e., Navi) by 480 and 366 meters on City A and B respectively,
indicating a perceivable difference in real road network.

Besides average performance, we also concern about the robustness of performances, i.e., how
steadily can we beat baselines? Table 5 provides the proportion of cases in which an algorithm
can outperform Dijkstra’s algorithm baseline. For instance, in city A, our GDP can beat Dijkstra’s
algorithm in 86.6% and 86.8% out of all test cases in terms of DTW and LCS, respectively. It achieves
the best among all other methods.

Table 4: Evaluations for path planning. Less DTW or larger LCS means better performance.

City Metrics Methods
DA NMLR KS Navi GDP (Ours)

A DTW 2.434 9.109 2.405 2.164 1.683
LCS 9.254 9.772 11.485 13.505 16.730

B DTW 2.883 10.114 2.936 2.792 2.426
LCS 9.233 10.066 12.207 14.390 16.856

Table 5: Proportion of test cases that can beat Dijkstra’s baselines.

City Metrics Methods
DA NMLR KS Navi GDP (Ours)

A DTW − 13.3 82.3 81.3 86.6
LCS − 70.3 83.8 79.0 86.8

B DTW − 11.1 76.9 78.7 81.3
LCS − 72.3 84.2 83.7 87.3

F.3 ILLEGAL CASES DISCUSSION

Hit ratio discussion. We adopt the hit ratio (HR), which is the ratio between planned path hitting the
destination to all paths. Intuitively the hit ratio is affected by the distance, so we split the sampled
paths evenly into three groups based on their lengths and calculate the HR. Also, though our OD
pairs is sampled from test data, we also shuffled the OD pairs to add the difficulty of planning. The
HR comparison is illustrated in Figure 7. We found that for existing OD pairs from test data, the HR
remains steadily around 98.6% / 99.0% in city A/B, respectively. As for shuffled OD pairs, the HR
slightly drop to 94.2% / 96.8%. This results indicates that our GDP ensures to reach the destination
at a high success rate.

Disconnection and loop discussion. When we sample vertices directly based on the estimated
distribution without help of post process like beam search. The model would generate illegal cases,

17

https://github.com/sdycodes/Graph-Diffusion-Planning


Published as a conference paper at ICLR 2024

like disconnected vertices or loops. We switch off post process and calculate the proportion of illegal
cases (see Table 6). Specifically, we randomly sampled 1000 OD pairs to plan paths. For each
planned path, we calculate the ratio between number of disconnected vertices or loops to the length
of planed paths. It can be shown that illegal cases happens very rarely (no more than 5% averagely in
each path), which indicates that our model captures the graph structure.

Table 6: Proportion of illegal cases (mean ± std).
Dataset Disconnection Loop
City A 0.0479± 0.0294 0.0123± 0.0788
City B 0.0473± 0.0309 0.0203 + 0.107

F.4 COMPARISON BETWEEN GENERATED AND REAL PATHS

The generated and real paths on map are illustrated in figure 6. Some main roads are covered by
more paths (red lines are more wide), which intuitively indicates generated paths follows real paths
distributions.

(a) Real paths (b) Generated paths (c) Real paths on (d) Generated paths

Figure 6: Comparisons of real and generated paths on city A (Figure 6(a) and Figure 6(b)) and B
(Figure 6(c) and Figure 6(d)).

Next we show our path lengths distributions to show the effectiveness of our Gaussian mixture model
for path lengths. The Jensen-Shannon divergences of path length distributions are 0.0173, 0.0238 on
City A and B, respectively. The histogram are illustrated in Figure 8. It can be shown that the length
distribution of generated paths are very close to that of real paths, which validates the effectiveness of
our Gaussian mixture model.
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Figure 7: Hit Ratio (HR) of Planned paths on city
A (left) and B (right)
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Figure 8: Histograms of path lengths of City A and
B.

F.5 SCALABILITY AND EFFICIENCY

We random sample 1000 OD pairs from City A and B for execution efficiency validation with batch
size 200 (see Table 7). It is not surprising that Dijkstra’s Algorithm runs fastest. Other baselines such
as NMLR and KS also run fast since they have a relatively simple neural network structure. Our
method run faster than the strong baseline Navi. Considering Navi can support real-world application,
the delay of our method is also acceptable.
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Table 7: Execution time comparison in seconds (mean ± std).
Dataset DA NMLR KS Navi GDP (Ours)
City A 0.0016± 0.003 0.024± 0.003 0.0187± 0.0166 0.347± 0.205 0.149± 0.550
City B 0.0015± 0.002 0.025± 0.003 0.0169± 0.0176 0.339± 0.133 0.112± 0.315

Next we discuss the scalability. In an Nvidia RTX 3090 with 24 GB memory, our method can support
batch size up to 400 (See figure 9). We test time and memory consumption under different batch sizes
from 10 to 400 on City B. As batch size increases, the memory consumption increases linearly, while
the execution time for each planning task correspondingly reduces from 0.316 to 0.115 seconds.
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Figure 9: Memory and time consumption
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