
Collision-Aware Route Planning in Warehouses
Made Efficient: A Strip-based Framework

Dingyuan Shi∗, Nan Zhou∗, Yongxin Tong∗, Zimu Zhou†, Yi Xu∗, Ke Xu∗
∗ SKLSDE Lab, BDBC and IRI, Beihang University, Beijing, China

† City University of Hong Kong, Hong Kong, China
∗{chnsdy, nzhou, yxtong, xuy, kexu}@buaa.edu.cn

†zimuzhou@cityu.edu.hk

Abstract—Multi-robot systems are deployed in modern ware-
houses to reduce operational cost. The robots are tasked to
deliver items stored on racks to pickers for fast distribution.
A central algorithmic problem is collision-aware route planning,
which aims to plan shortest routes for robots to deliver racks
while avoiding collision with racks, pickers, and other robots.
Prior solutions are inefficient in real-world warehouses, where
route planning requests emerge online and at large scale. In
this paper, we identify collision judgement in grid-based ware-
house representation as the primary efficiency bottleneck, and
propose a novel Strip-based Route Planning framework (SRP).
Specifically, we exploit the regularity in warehouse layouts, and
aggregate grids into strips. The strip-based representation also
converts collisions of 3-dimensional (2-dimensional space and 1-
dimensional time) routes into 2-dimensional (1-dimensional space
and 1-dimensional time) segment intersections, which can be
fast checked via computational geometry. We further accelerate
the collision judgement via indexing on segments within strips.
Theoretical analysis shows a reduction of time complexity from
square to linear-logarithmic. Experimental results on datasets
collected from real-world robotized warehouses show that our
SRP is up to 227× faster than existing methods.

I. INTRODUCTION

Robots are gaining increasing popularity in warehouses for
cost-effective item distribution [1]. They are typically deployed
in warehouses to deliver racks containing items to pickers
for processing, and return empty racks back to their original
locations. Such robotized warehouses significantly reduce the
human labor cost and improve the distribution efficiency.

A critical issue in such warehouses is to plan collision-
free routes for multiple robots, known as the Collision-Aware
Route Planning (CARP) problem [2]–[6]. Concretely, we need
to plan shortest paths for every robot moving between racks
and pickers without colliding against racks, pickers, and other
moving robots. A primary challenge is to plan these routes
with high-efficiency, because the distribution requests emerge
dynamically i.e., in an online setting [3]–[6] and at large scale.
For example, over 2 billion logistic orders were created in a
single shopping event in 2020 [6].

Despite recent solutions [3]–[6] to the online CARP prob-
lem, they hardly scale to real-world warehouses. The state-of-
the-art [4] incurs a delay of over 60 seconds when planning
merely 600 origin-destination pairs, which is unacceptable for
large-scale warehouses that must perform route planning for
100, 000 origin-destination pairs per day [6]. We argue that

the efficiency of prior proposals is constrained by collision
judgement on grid-based warehouse representations. Specif-
ically, collisions are modeled as spatiotemporal coordinates
conflicts, and A* based searching [7] is conducted on the
3-dimensional space. Albeit various branching tricks, the 3-
dimensional search space remains the efficiency bottleneck,
even for mid-sized warehouses partitioned into 200×100 grids.

To break the efficiency bottleneck of collision judgement,
we devise a new Strip-based Route Planning framework (SRP).
The key insight is to exploit the regularity of the warehouse
layout for acceleration. Instead of representing the warehouse
as grids, we aggregate grids into strips upon which we perform
inter- and intra-strip route planning. Such separation restricts
the collision domain to within strips. Accordingly, at inter-
strip level we only consider shortest path finding among strips
without collision awareness while at intra-strip level we make
collision judgement and plan routes within a strip. Such strip
aggregation also compresses the search space of collisions
from 3-dimensional (2-D space + 1-D time) to 2-dimensional
(1-D space + 1-D time), which allows representing paths
within a strip by 2-dimensional segments. Furthermore, colli-
sion can now be fast detected via computational geometry. Fi-
nally, we also design indexing to speed up collision detection.
Theoretical analysis shows that SRP reduces time complexity
from O((HW)2) to O((HW) log(HW)) in a warehouse with
width of W grids and length of H grids. Experiments show
that SRP can be up to 227× faster than prior solutions on
datasets collected from real-world robotized warehouses.

Our main contributions can be summarized as follows.

• We propose a strip-based representation for fast collision
awareness. It breaks the efficiency bottleneck in grid-
based representations leveraging the regularity of ware-
house layouts, and transforming collisions in routes into
segment intersections in computational geometry.

• We devise an end-to-end collision awareness route plan-
ning solution suited for large-scale warehouses. It dras-
tically reduces the time complexity of prior algorithms
from O((HW)2) to O((HW) log(HW)), where W and
H are the width and length of a warehouse in grids.

• Experimental results on real-world datasets show that our
solution can be up to 227× faster than existing methods
while maintaining high effectiveness.

TABLE I
SUMMARY OF IMPORTANT NOTATIONS.

Notation Description

M matrix representation for a warehouse
H/W length/width of a warehouse
g, ⟨i, j⟩ a grid and its coordinate

o, d, t
origin,destination and emerging time
of a planning request

str, Gr
start moving time and sequence of visiting grids
of route r

Qt/Rt set of pairs (input)/routes (output) at time t
S, V,E strip graph and its vertices and edges
ϕ, ψ segments in our SRP
s/f start/finish point of a segment

C(ϕ, ψ) whether two segments collide with each other
CT (ϕ, ψ) collision time of two segments

II. PROBLEM STATEMENT

In this section, we present the Collision-Aware Route Plan-
ning (CARP) problem in the context of robotized warehouses.
In a robotized warehouse, there are racks to store items and
pickers for item processing. Racks and pickers are installed
at fixed positions. Robots are tasked to deliver racks with
items to pickers and return racks back to the original locations
after item processing. We aim to plan paths for robots moving
between racks and pickers to minimize the finish time of
all items. We formally define the relevant concepts and the
problem below. Table I summarizes the important notations.

Definition 1 (Warehouse Matrix). Following prior conventions
[3], [4], [6], we consider a warehouse discretized into grids,
which can be presented as a matrix M , where M [i, j] denotes
a grid ⟨i, j⟩ at the i-th row and the j-th column. Its value can
either be “true” or “false”, indicating whether there is a rack
at the grid. The unit length is grid width.

Definition 2 (Route). A route r is represented as ⟨str, Gr⟩,
where str is the start moving time and Gr = {g1, . . . , g|Gr|}
is an ordered sequence of visiting grids.

Following previous studies [2], [3], [6], we make the fol-
lowing assumptions on the movement of robots.

• A robot can only move along grids with no racks, i.e.,
grids with values “false”.

• A robot can only move along the directions of rows or
columns at unit speed i.e., one grid per second. Note that
then Gr[i] = gi will be visited at timestamp str + i.

We consider the following route planning problem.

Definition 3 (Collision-Aware Route Planning (CARP) [5],
[6]). Given a warehouse matrix M and a set of origin-
destination pairs Qt = {⟨o1, d1⟩, . . . , ⟨o|Qt|, d|Qt|⟩} at ev-
ery timestamp t, the problem is to output a set of routes
Rt = {r1, ..., r|Rt|} correspondingly, such that

min
∀t

max
∀r∈Rt

str + |Gr|,
⋃
∀t
Rt is collision-free (1)

where a origin-destination pair can be either robot-rack or
rack-picker, which corresponds to the event of robot picking up

(a) (b)

Fig. 1. Illustration of two types of collision.

racks or delivering to pickers. The goal min∀tmax∀r∈Rt str+
|Gr| is to minimize the finish time after all routes, i.e., the
makespan, which is widely adopted in practice [2], [4]–[6].
The collision-free constraint is defined as follows [2], [6], [8].
Any two routes r1 and r2 should avoid the two cases below:

• Two routes visit the same grid at the same time. i.e.,
∃i, j s.t. Gr1 [i] = Gr2 [j]∧str1 +i = str2 +j (Fig. 1(a)).

• Two routes try to passing over each other. i.e.,,
∃i, j s.t. Gr1 [i] = Gr2 [j + 1] ∧ Gr1 [i + 1] = Gr2 [j] ∧
str1 + i = str2 + j (Fig. 1(b)).

A set of routes R is collision-free if no collision occurs
between any two routes in R.

Remarks. We make two notes on the CARP problem.
• The CARP problem is often studied in the online setting

in robotized warehouse applications, where the origin-
destination pairs emerge dynamically. A practical route
planning solution in this setting is expected to yield
high efficiency with reasonable effectiveness [3], [5],
[6]. This is because prior research has proven that it
is almost impossible to achieve optimal route planning
in the online setting [3]. More importantly, large-scale
warehouses demand high-efficiency route planning, e.g.,
50 routes per second in real-world applications with a
daily throughput of over 100, 000 [6].

• Existing solutions [3], [5] to the online CARP prob-
lem are low in efficiency, particularly for large-scale
warehouses. They devise A*-based search algorithm [7]
with various heuristics on the warehouse matrix at the
grid level. Planning on grids results in a 3-D searching
space or frequent replanning execution to avoid collision,
which incurs huge delay in large-scale warehouses. For
instance, the state-of-the-art method [4], takes over 60
seconds to plan only 600 origin-destination pairs. This is
unacceptable if number of routes reaches 100, 000.

III. STRIP-BASED ROUTE PLANNING FRAMEWORK

This section overviews Strip-based Route Planning (SRP),
an efficient solution framework for the online CARP problem.

Principles. Our key idea for high efficiency is to plan routes
on strips (a line of grids) rather than individual grids.

• We argue that the warehouse layout is an overlooked
opportunity for efficient route planning in warehouses.
A real-world warehouse is usually designed with aisles
and clusters of racks (see Fig. 15). Therefore, grids can

Inter-Strip Route Planning(Sec. IV)

Intra-Strip Route Planning (Sec. V)

Strip-based Route Planning (SRP)

Route Planning
on Strip Graph (Sec. IV-B)

Segment-based Representation (Sec. V-A, V-B)

Segment-based Route
Planning (Sec. V-C)

Segment Index
(Sec. V-D)

Input: Warehouse
matrix

Output:
Collision-free
routes

Strip Graph
(Sec. IV-A)

Putting It Together (Sec. VI)

Input: Origin-destination pairs

𝑜! , 𝑑! , 𝑜" , 𝑑" , …

Fig. 2. Workflow of our Strip-based Route Planning framework (SRP).

be naturally aggregated into strips (rows or columns of
grids) to reduce the search space in route planning.

• Concretely, we propose to plan routes (find shortest paths
and detect collisions) at inter- and intra-strip levels.
Such separation restricts the collision domain to within
strips. That is, the time-consuming collision detection
is only necessary in each strip rather than every grid
in the warehouse matrix (see Sec. IV-B). We further
accelerate collision detection in strips via indexing (see
Sec. V-D). Theoretical analysis shows that we can reduce
the time complexity of route planning from O((HW)2)
to O(HW log(HW)) (see Sec. VII-B).

• It is worth mentioning that shortest path finding at two
levels (inter- and intra-strip) still results in effective
route planning. This is because the optimal paths (with
minimal makespan) are likely to take straight lines e.g.,
aisles, which align with our strip abstraction. A proof on
effectiveness of our framework is provided in Sec. VII-A.

Workflow. Fig. 2 illustrates the workflow of our SRP frame-
work. Given a warehouse matrix, we first aggregate grids in
the same row or column into strips. Then we plan routes at
inter- and intra-strip levels for the input pairs of origins and
destinations. Inter-strip route planning is collision-free. Thus,
we view each strip as a vertex in a graph (see Fig. 3) and only
perform shortest path finding on the graph. Intra-strip route
planning is responsible for both shortest path finding within
strips and collision detection. For efficient route planning
within strips, we represent routes as segments, and exploit
computational geometry and indexing techniques to speed up
collision detection. The inter-strip module calls the intra-strip
module to output the final grid-level collision-free routes.

IV. INTER-STRIP ROUTE PLANNING

This section introduces the inter-strip route planning of
our SRP. Given a warehouse matrix, we construct a strip
graph (Sec. IV-A), upon which a vanilla shortest path finding
algorithm is executed (Sec. IV-B).

x

𝑣!: ⟨ 1,1 , 1, 8 ,ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑎𝑖𝑠𝑙𝑒⟩

𝑣!": ⟨ 6,1 , 6,8 , ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑎𝑖𝑠𝑙𝑒⟩

𝑣#: ⟨ 2,1 , 5, 1 , 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙, 𝑎𝑖𝑠𝑙𝑒⟩ 𝑣 $
:⟨
2,
7
,
5,
7
,𝑣
𝑒𝑟
𝑡𝑖
𝑐𝑎
𝑙,
𝑟𝑎
𝑐𝑘
⟩

Grid Aggregation

	𝑣!

	𝑣# 	𝑣% 	𝑣& 	𝑣' 	𝑣(𝑣) 	𝑣$ 	𝑣*

	𝑣!"

Edges building

𝑒: ⟨𝑣! ,𝑣* , 0⟩

Fig. 3. A toy strip graph. We first aggregate grids in the same rows or
columns into strips, then view each strip as vertex and construct strip graph.
Edges exist between two adjacent strip vertices (not both are racks).

A. Strip Graph Representation for Warehouse Matrix

Definition 4 (Strip). A strip is denoted as a vertex v =
⟨α, β, dir, type⟩, which represents a row or column of con-
secutive grids with the same value (either “true” or “false”)
in the warehouse matrix.

Here αv and βv are the westernmost and easternmost (north-
ernmost and southernmost) grid coordinates if the direction
dirv is latitudinal (longitudinal), respectively. The type is
either “ailse” or “rack”. As mentioned in Sec. I, a well-
designed warehouse often contains multiple aisles and clusters
of racks, providing a natural opportunity for grid aggregation.

For easy route planning on grids aggregated as strips, we
define the strip graph below.

Definition 5 (Strip Graph). A strip graph S is denoted as
⟨V,E⟩ with vertices V and edges E. Each vertex v ∈ V is a
strip. Each edge e ∈ E with weight we connecting ue and ne
is denoted as ⟨ue, ne, we⟩.

There exists an edge between ue and ne if the two strips
contain adjacent grids. The edge weight indicates the time cost
to move from one strip to the other, which is calculated by
intra-strip route planning (see Sec. V).

Algorithm 1 illustrates how to construct a strip graph from
a warehouse matrix. For vertices, we first aggregate the long
latitudinal aisles as a vertex (line 4 ∼ 8), and then aggregate
the remaining grids along the longitudinal direction (line 10 ∼
19). We decide whether there is an edge between two vertices
based on the coordinates of the grids they contain. Note that
two vertices both have “rack” type are not adjacent because
robots cannot cross over racks. The edge weights are initialized
as zero (line 21 ∼ 24) which will be calculated cooperating
with intra-strip level (see Sec. VI). Fig. 3 provides an example
of a warehouse matrix and the corresponding strip graph.

Remarks. To simplify the grid aggregation, we assume rack
clusters form the same 2× l sized rectangles, and their sides
are parallel to each other. Under this assumption, most strips
contain l grids, except the long aisles spanning the entire

Algorithm 1: Strip Graph Construction
Input : M : warehouse matrix
Output : S: strip graph

1 S ← ⟨∅, ∅⟩
2 visit[H,W]← false
3 # Aggregate grids in latitudinal direction
4 for i← 1, ..., H do
5 if M [i, 1...W] = false then
6 v ← ⟨⟨i, 1⟩, ⟨i,W ⟩, latitudinal, aisle⟩
7 S.V ← S.V ∪ {v}
8 visit[i, 1...W]← true

9 # Aggregate grids in longitudinal direction
10 for i← 1, ..., H do
11 for j ← 1, ...,W do
12 if visit[i, j] = false then
13 k ← argmaxk′{M [i...k′, j] =M [i, j]}
14 if M [i, j] = false then
15 v ← ⟨⟨i, j⟩, ⟨k, j⟩, longitudinal, aisle⟩
16 if M [i, j] = true then
17 v ← ⟨⟨i, j⟩, ⟨k, j⟩, longitudinal, rack⟩
18 S.V ← S.V ∪ {v}
19 visit[i...k, j] = true

20 # Build edges
21 for v1 ∈ S.V do
22 for v2 ∈ S.V do
23 if v1, v2 is adjacent then
24 S.E ← S.E ∪ {⟨v1, v2, 0⟩}

25 return S

warehouse (see Fig. 3). Thus, the number of strips will roughly
reduce to 1

l , where l is the length of rack clusters. In fact,
considering long aisles are aggregated into single vertices,
the ratio is even lower (See Sec. VIII-A). This reduction
accelerates the process of shortest path finding.

B. Route Planning on Strip Graph

Upon the strip graph, we can apply traditional shortest path
finding algorithm such as Dijkstra’s algorithm [9] without ac-
counting for collisions. This is because the separation of inter-
and intra-strip route planning restricts the collision domain to
within strips. Specifically, the inter-strip route planning only
calculates which aisles a route chooses to pass, rather than a
concrete path within an aisle i.e., a strip. Collision awareness
of concrete paths is managed by intra-strip route planning.

V. INTRA-STRIP ROUTE PLANNING

This section presents the intra-strip route planning of SRP.
The key novelty is a segment-based representation of routes
within strips (Sec. V-A), which allows fast collision detection
(Sec. V-B) and facilities path finding (Sec. V-C). We also
propose a segment index to accelerate the collision detection
of new routes within a strip (Sec. V-D).

A. Segment-based Representation of Routes within Strips

An advantage of strip-based warehouse representation is that
the spatial dimension of routes within strips is reduced from

Temporal dimension

Sp
at

ia
l d

im
en

sio
n

1

𝑔!

𝑔"

𝑔#

𝑔$

𝑔%

𝑔&

1

2

3

2

3

4,5

4

1

2
6
7

8

2 3 4 5 6 7 8

𝜙! = ⟨ 1,6 , [2,5]⟩

𝜙" = ⟨ 4,4 , [4,4]⟩

𝜙 #
=
⟨ 1
,1	
, [3
, 3]
⟩

𝜙 $
=
⟨ 2
,1
,[4
, 3
]⟩

𝜙 %
=
⟨ 5
,3
,[8
, 8
]⟩

𝜙& = ⟨ 4,3 , [5, 3]⟩

Fig. 4. Examples for segment-based route representation.

two to one, i.e., along the strip direction dirv . Accordingly,
for a route within a strip, we can simplify its representation
from 3-D (2-D space + 1-D time) to 2-D (1-D space + 1-D
time), which also speeds up collision detection. Formally, we
represent routes within strips as segments below.

Definition 6 (Segment). A segment ϕ is a tuple ⟨s, f⟩, where s
and f are both 2-dimensional vectors. s[0] and s[1] represent
start time and grid number and f [0] and f [1] represent finish
time and grid number, respectively.

With the above definition, simple routes within a strip can
be represented as follows (see Fig. 4 for an illustration).

• A route moving forward along the strip direction corre-
sponds to a segment with slope 1, e.g., ϕ1 (in blue).

• A route moving backward along the strip direction cor-
responds to a segment with slope -1, e.g., ϕ2 (in black).

• As a special case, waiting time will form as a horizontal
segment (with slope 0), e.g., ϕ4 (in red).

A route within a strip may contain multiple cases, resulting in
segments forming polylines1, e.g., ϕ4, ϕ5, ϕ6 in Fig. 4.

Remarks. The segment-based representation of routes enables
easy intra-strip collision detection.

• Based on the segment representation, the collision be-
tween routes can be converted to the intersection or
overlap between segments, which can be checked in
constant time via computational geometry.

• Given unit moving speed [2]–[4], the slope can only be
1, -1 or 0, which simplifies collision time calculation.

B. Segment-based Collision Detection

By representing routes as segments, collisions among routes
are converted into intersections among segments.

1) Collision Detection Between Two Segments: Judging an
intersection and finding the intersection point of two segments
are classical problems in computational geometry [10].

Two segments intersect iff two endpoints of one segment
are separated by the other segment, which can be determined
by the cross product of two segment vectors (see Fig. 5).
Specifically, for segments ϕ and ψ, we first judge whether they

1A trivial case is that a route moving to a strip and leaving right away,
forming a single point.

have overlapped ranges in one dimension. If yes, we further
judge whether they intersect as below.

C(ϕ, ψ) = ((sϕ − fψ)× (sψ − fψ))((fϕ − fψ)× (sψ − fψ)) < 0

∧((fψ − fϕ)× (sϕ − fϕ))((sψ − fϕ)× (sϕ − fϕ)) < 0
(2)

The idea is if segment ϕ and ψ intersect, then angles α1

and α2 rotate in different directions, which can be inferred by
the cross-products of the corresponding segment vectors, and
so will the two angles α3 and α4 (see Fig. 5).

𝐬!

𝐟!

𝐟"

𝐬"

𝐶 𝜙,𝜓
= 𝐬! − 𝐟" × 𝐬"− 𝐟" 𝐟! − 𝐟" × 𝐬" − 𝐟" < 0	

∧ 𝐟" − 𝐟! × 𝐬! − 𝐟! 𝐬" − 𝐟! × 𝐬! − 𝐟! < 0

Opposite direction

Opposite direction

𝛼# 𝛼$

𝛼%𝛼&

𝛼#

𝛼$

𝛼%
𝛼&

Fig. 5. Illustration for Eq.(2).

The corresponding collision time CT is calculated as

CT (ϕ, ψ) = ⌊
sϕ[0] + sψ [0] + |sϕ[1]− sψ [1]|

2
⌋ (3)

Note that the segment slopes can only be 1, -1 and 0. If
the slope of one segment is 0 or both segments have the same
slope, the collision time can be obtained easily. So, we assume
slopes of 1 and -1. Let the line equation of ϕ be s = t+ b and
that for ψ be s = −t+c, where s, t are the spatial and temporal
dimensions and b, c are biases. Since sϕ[0] and sϕ[1] are on
segment ϕ, then b = sϕ[1]−sϕ[0]. Similarly, c = sψ[1]+sψ[0].
Since the interaction point is on both segments, we can derive
the intersection time t = c−b

2 i.e., t = sψ[1]+sψ [0]−sϕ[1]+sϕ[0]
2 .

If we swap the slopes of ϕ and ψ, t is sϕ[1]+sϕ[0]−sψ[1]+sψ[0]
2 .

The two cases can be unified as Eq.(3).
Fig. 6 provides an example of collision with segment-based

representation. Note that for the second type of collision (see
Fig. 6(b)), the floor operation in Eq.(3) is to ensure that
the earlier collision time is returned, which is practical for
collision detection.

2) Collision Detection of All Existing Segments: A feasible
route cannot collide with all other segments. Therefore, we
need to check collision of a new segment with all existing
segments. As a feasible solution, we organize all segments in
an ordered set (e.g., red-black tree [11]) based on their start
time s[0]. When checking whether a new segment will collide
with existing segments, we first conduct a binary search on the
ordered set to find segments whose start and finish time overlap
with the new segment, which indicates a potential collision.
Then we judge those potential collision segments one by one
using Eq.(2). If no collision occurs, we insert the new segment
into the ordered set.
Remarks. This collision detection method above incurs a time
complexity of O(2 log n + n), where n is the number of
segments in a strip. The two log terms correspond to the binary
search and insertion operation, respectively. The linear term is
due to the judgement. We will further accelerate the collision
detection scheme via indexing (see Sec. V-D).

Temporal dimension

Sp
at

ia
l d

im
en

sio
n

3

1

2

3

4

1

21 54

2

3

2

3

Collision at 𝑡 = 3

(a)

Temporal dimension

Sp
at

ia
l d

im
en

sio
n

3

1

2

3

4

1

21 54

2

3

1

2

Collision at 𝑡 = 2,3

3

(b)

Fig. 6. Converting collisions into intersection or overlap among segments.

Algorithm 2: Segment-based Route Planning
Input : t: current time, ori: origin gird, dst: destination

gird
Output : r: intra-vertex route.

1 o, d← get grid number of ori, dst
2 segments← backtracking(t, o, d)
3 for segment ∈ segments do
4 Insert segment into ordered set

5 r ← convert route from segments
6 return r
7 backtracking
8 s← ⟨o, t⟩, f ← ⟨d, t+ |d− o|⟩
9 c← Judge collision time via Eq.(3)

10 if c = INF then
11 # Move forward w/o waiting cause no collision
12 return {⟨s, f⟩}
13 else
14 # Move forward w/o waiting cause collision
15 segments← ∅
16 # Try to wait and search route recursively
17 for τ = c+ 1, ... do
18 s← ⟨o, t⟩, f ← ⟨o+ c− 1, t+ c− 1⟩
19 segments.add(⟨s, f⟩)
20 backtracking(t+ τ, o+ c− 1, d)
21 segments.remove(⟨s, f⟩)

22 return segments

C. Segment-based Route Planning

To plan routes within a strip, we design a backtracking
algorithm to search the shortest collision-free routes (see
Algorithm 2). The idea is to store the current steps before
making the next move. If collision occurs in the next move,
we return to the previous step, wait one time unit and try to
move again, till a collision-free route is found. Specifically,
after converting the grid to the one dimensional grid number
within the vertex (line 1), we begin backtracking searching
(line 2). We first greedily move towards the destination (line
8 ∼ 9). If no collision occurs we directly return this segment
(line 10 ∼ 12) and convert it to a route (line 5). If collision
occurs, we then try to stop right before the collision occurs
(line 13) and try to move forward again (line 14 ∼ 21). Note
that we prohibit routes moving backward the direction from
origin to destination for searching efficiency. Fig. 7 shows an
example of segment-based route planning.

Temporal dimension

Sp
at

ia
l d

im
en

sio
n

𝑜𝑟𝑖

𝑑𝑠𝑡

1. try to move to 𝑑𝑠𝑡 directly

(a)

Temporal dimension

Sp
at

ia
l d

im
en

sio
n

𝑜𝑟𝑖

𝑑𝑠𝑡 2. backtrack

3. wait and try

(b)

Temporal dimension

Sp
at

ia
l d

im
en

sio
n

𝑜𝑟𝑖

𝑑𝑠𝑡

4. find a route

(c)

Fig. 7. Illustration of collision awareness in intra-strip route planning.

𝜃 =
𝜋
4 𝜙 = ⟨𝐬, 𝐟⟩

𝐬 1 = 4

𝐬 0 = 5

𝐟 1 = 2

𝐟 0 = 7

𝜙 !
=
⟨𝐬 !, 𝐟 !⟩

𝐬′ 0 =
2
2

𝐬′[1] = 𝐟 ! 1 =
9 2
2

𝐟′ 0 =
5 2
2

(a)

𝜃 = −
𝜋
4

𝜙 = ⟨𝐬, 𝐟⟩

𝐟 1 = 4

𝐬 0 = 3

𝐬 1 = 2

𝐟 0 = 5

𝜙
! =

⟨𝐬
! , 𝐟
! ⟩

𝐬′ 0 =
5 2
2

𝐬 ! 1 = 𝐟 ! 1 = −
2
2

𝐟′ 0 =
9 2
2

(b)

Fig. 8. Illustration of coordinate rotation when θ is π
4

(a) or -π
4

(b).

D. Accelerating Collision Detection via Indexing

Recall from Sec. V-B that it takes O(2 log n + n) time
to check whether a candidate route collides with all existing
routes, where n is the number of segments in a strip. We now
accelerate the process with slope-based indexing.

Basic Idea. We can easily check whether the collision among
segments with the same slope. Since the segments of the
same slope are parallel to each other, a segment will collide
with others only if they are at the same location in direction
orthogonal to parallel direction. For horizontal segments, the
orthogonal direction is the spatial dimension while for non-
horizontal segments it requires an extra rotation as below.

s′ = (

[
cos θ − sin θ
sin θ cos θ

]
s)T (4)

The rotation angle θ is π
4 for segments of slope -1, and −π

4
for those of slope 1. s is the segment endpoint. Fig. 8 shows
an example of coordinate rotation.

To further exploit collision detection in case of parallel
slopes, we separately store segments in different maps based
on their slopes. Specifically, the key of each map is s[0] (or
s′[0] after rotation if non-horizontal) and its value is an ordered
set of the corresponding segments based on their start time
(same as Sec. V-B to support binary search). Algorithm 3
describes the operations of insertion and collision detection.

Given a segment, we use a naive method (See Sec. V-B) to
judge existing segments with different slopes. For segments
with the same slope, we filter potentially intersected segment
using the key of the aforementioned map and time span over-
lapping, and then judge intersection one by one (see examples
below). By replacing line 4 and line 9 in Algorithm 2 with
insertion and collision detection operation, respectively, we
obtain the accelerated algorithm for intra-strip route planning.

Example. Fig. 9 illustrates how slope-based indexing acceler-

ates collision detection for a segment s of slope 0 (marked in
red). The left of Fig. 9 shows the naive collision detection. We
first filter existing segments (in gray) whose time spans overlap
with s. In this example, s spans from 11 ∼ 16, and segments
spanning from 10 ∼ 12, 10 ∼ 13 and 14 ∼ 17 overlap with s,
which indicates potential intersection. Afterwards, we check
the remaining segments one by one (in orange box). The right
of Fig. 9 shows how we accelerate collision detection of s via
slope-based indexing. We separately manage segments based
on slopes. For segments with slope 0, which are parallel to
s, they intersect only when they have the same spatial dimen-
sions. In this example, only segments with spatial coordinate
13 may intersect (in orange box). We build a mapping from
their spatial dimension to segments (maintained in a sorted
list), then pick the segments whose spatial dimension is the
same as s, and use binary search for further filtering. For
segments with slope 1 or -1, the principle is the same, except
an extra rotation for the mapping. For example, the spatial
coordinate of the leftmost segment calculated by Eq.(4) is
4
√
2, whose s and f are ⟨0, 8⟩ and ⟨5, 13⟩.

Sp
at

ia
l d

im
en

si
on

Temporal dimension

𝑠

Sp
at

ia
l d

im
en

si
on

Temporal dimension

𝑠
Filtered out

Filtered out

Sp
at

ia
l d

im
en

si
on

Temporal dimension

𝑠

Filtered out

Only segments have same spatial
dimension are potentially
intersected

Segm
ent

s w
ith

 slo
pe

1

Segments with slope -1

Segments with slope 0

Sp
at

ia
l d

im
en

si
on

Temporal dimension

𝑠

Filtered out
Filtered out

Judge intersection
one by one

Spatial dimension

after rotation

Spa
tia

l d
im

en
sio

n

aft
er

rot
ati

on

0 5 10
16

251914 1713
11

12

8

13

8

13

13

4 2

50

Fig. 9. Example of how naive collision detection (left) can be accelerated by
slope-based indexing (right).

Remarks. The time complexity of collision detection is re-
duced to O(logm + m + log(n − n′) + n − n′) and the
insertion time complexity is reduced to O(logm), where n′ is
the number of segments of a certain slope and m is the number
of segments with the same s′[0]. Thus, the overall collision
detection time complexity is reduced from O(n + 2 log n) to
O(log(n− n′) + n− n′ +m+ 2 logm).

Moreover, the rotation of non-horizontal segments has a
side-benefit. The time dimension is projected to both the
rotated axes, making s′[1] ever-increasing. This allows two
non-horizontal segments to almost always have different s′[1],
making an almost one-to-one mapping. Consequently, m, i.e.,
the number of segments with the same s′[0], is rather small,
which further accelerates the overall collision detection.

VI. PUTTING IT TOGETHER

The end-to-end route planning algorithm of SRP operates in
a top-down manner. The inter-strip route planning algorithm

Algorithm 3: Segment Index Operations
1 Initialize
2 S0,M0 ← ordered set and map for 0-slope segments
3 U1,M1 ← ordered set and map for 1-slope segments
4 S−1,M−1 ← ordered set and map for -1-slope segments
5 Insertion

Input : ⟨s, f⟩: segment remain to be inserted
6 k ← get slope of segment
7 add ⟨s, f⟩ into Sk
8 if k ̸= 0 then
9 rotate coordinate by Eq.(4)

10 add ⟨s, f⟩ into Mk.get(s[0])

11 Collision Judgement
Input : ϕ = ⟨s, f⟩: segment
Output : c: earliest collision time, INF if no collision.

12 k ← get slope of segment
13 if k ̸= 0 then
14 rotate coordinate by Eq.(4)

15 c← INF
16 # Find all unparalleled segments
17 S1, S2,← set of segments whose slopes ̸= k
18 # Find potentially overlapped segments
19 S∗

1 , S
∗
2 ← binary search from S1, S2 by s[0] and f [0]

20 # Judge collision one by one
21 for ψ ∈Mk.get(s[0]) ∪ S∗

1 ∪ S∗
2 do

22 if collide by Eq.(2) then
23 τ ← get collision time by Eq.(3).

24 c← min(c, τ)

25 return c

performs shortest path finding on the strip graph. As men-
tioned in Sec. III, there is no need to consider collision at
inter-strip level because all the concrete routes are planned at
intra-strip level. The inter-strip level only decides which strips
are chosen for a route whereas how to pass a strip without
collision is calculated by intra-strip route planning.

Inter-strip level calls the intra-strip route planning algorithm
to retrieve the edge weights of the strip graph. The intra-strip
route planning algorithm calculates the edge weights i.e., the
duration of routes for the two strips in two steps: (i) planning
collision-free routes to an adjacent grid within the origin strip;
and (ii) moving from the adjacent grid to the destination strip.

Since the directions of strips are either latitudinal or longi-
tudinal, the adjacent grid contains only two cases.

• Side-by-side. Two strips have the same direction. In this
case, any grids included in the origin strip is adjacent to
the destination strip (see Fig. 10(a)).

• Perpendicular. Two strips have different directions. In
this case, only one grid in the origin strip is adjacent
to the destination strip (see Fig. 10(b)).

Algorithm 4 shows the overall route planning process. It
is built upon the Dijkstra’s algorithm for shortest path search
over the strip graph, where line 10 ∼ 24 is Dijkstra’s breadth-
first-search and line 19 ∼ 23 is its relaxation operation [10].
Variable cost[v] records the route duration from origin to
a strip vertex v (line 2), pred[v] records the predecessor
vertex of v along the planned path at inter-strip level (line

Adjacent grids

Adjacent grids

Adjacent grids

Adjacent grids

(a)

Adjacent grids

(b)

Fig. 10. Illustration of strip adjacency.

3), intraRoutes[v] records the intra-strip level routes from
pred[v] to v within a strip (line 4), and q is the priority
queue recording strip vertices for shortest path searching.
Vertices with lower cost have higher priority to be extracted
(line 8). The edge weight connects the inter- and intra-strip
levels. Whenever the inter-strip level traverses an edge, intra-
strip route planning is executed and provides intra-strip route
duration as the edge weight for the inter-strip level (line 18).
Example. Fig. 11 shows an example to plan routes from ori
grid to dst. We first find its corresponding strip vertices vo and
vd, which are v3 and v9, respectively, in this example. Then we
run Dijkstra’s algorithm to search the path at inter-strip level.
Assume a route v3 → v1 → v9, is returned. The weights of
each edge will be calculated by intra-strip route planning. For
example, to calculate the weight of edge ⟨v3, v1⟩, Algorithm 4
first gets the current location g (line 12), and then obtains its
adjacent grid g′ (line 15). Since the two grids are adjacent,
the weight is 1 (see green marks and notations in Fig. 11).
As for edge ⟨v1, v9⟩, it first gets the current location from
intraRoutes (yellow g in Fig. 11), then finds the adjacent
grid g′, and assigns the edge weight to 8 (see yellow marks
and notations in Fig. 11). If there are other routes, intra-strip
planning may require some waiting steps to avoid collision
and the edge weight will increase.

𝑔!

𝑔

𝑔

𝑔!
adjacent grids adjacent grids

Edge weight is 8

Edge weight is 1

	𝑣!

	𝑣" 	𝑣# 	𝑣$ 	𝑣% 	𝑣& 	𝑣' 	𝑣(𝑣)

	𝑣!*

𝑜𝑟𝑖

𝑑𝑠𝑡 𝑣" 𝑣#

Fig. 11. Example of edge weight calculation via intra-strip route planning.

Remarks. The high efficiency of our framework may restrict
the research space. Concretely, we prohibit the route from
moving backward within a strip, and constrain inter-strip
movement within adjacent grids. These restrictions might lead
to no feasible route, in which case we call the A* algorithm.
But in practice this happens very rarely (1 out of 105), so this

Algorithm 4: End-to-End Route Planning in SRP
Input : t: current time, ori: origin gird, dst: destination

gird, SI: segment index
Output : r: collision-free route

1 # cost[v] indicates route duration from vo to v
2 cost[1...|SG.V |]← {INF, ..., INF}
3 pred[1...|SG.V |]← {−1, ...,−1}
4 intraRoutes[1...|SG.V |]← {∅, ..., ∅}
5 # Inter-strip route planning
6 vo, vd ← strip vertex containing ori, dst
7 # Initialize priority queue, less cost has higher priority
8 q ← ∅
9 add (vo, 0) into q

10 while q not empty do
11 u← q.extractMin()
12 g ← current location from intraRoutes[pred[u]]
13 # e is an edge adjacent to u
14 for e = ⟨ue, ve⟩ where ue = u do
15 g′ ← adjacent grid between u, ve
16 # Intra-strip route planning
17 r′ ← Intra-vertex route planning(t, g, g’)
18 we ← duration of r′

19 if we + cost[u] ≤ cost[ve] then
20 cost[ve]← we + cost[u]
21 intraRoutes[u]← r′

22 pred[ve]← u
23 q.put(ve, cost[ve])

24 r ← derive complete route from intraRoutes, pred
25 return r

(a) (b)

Fig. 12. Sub-optimality due to strip revisit omission. The numbers are the
time when the routes of the same color pass the corresponding grid. The blue
route is in planning route and those in other colors are existing routes.

will not influence efficiency.

VII. THEORETICAL ANALYSIS

A. Effectiveness Analysis

Since the global optimality of CARP problem in the online
setting can hardly be reached and is affected by the arrival
pattern of the origin-destination pairs [3], we focus on the
effectiveness of a single route being planned, i.e., a single call
of our Algorithm 4. Specifically, we define the competitive
ratio CR of a single call to be the ratio between route length
of our method and optimal route length.

The sub-optimality of our method is caused by three cases.
• Strip Revisit Omission. The inter-strip path finding adopts

shortest path finding, where each strip can only be visited
at most once. However, each strip contains multiple grids
and a revisit may result in to a better solution. As shown
in Fig. 12, when planning the blue route, our method
can only wait till t is 7 when no collision occurs. Thus,

Temporal dimension

Sp
at

ia
l d

im
en

sio
n

1 53 7 𝑡 = 4 𝑡 = 5 𝑡 = 8

5
5

4
4 5

8

5
6
7

𝑡 = 4 𝑡 = 5 𝑡 = 7
1
2

4
34

4
5

5
5

6
7

Fig. 13. Sub-optimality due to intra-strip backtracking restriction.

(a) (b)

Fig. 14. Sub-optimality due to greedy inter-strip transit.

the route to destination will cost 11 time units in total.
However, if we can revisit the strip, we can leave the
right strip at t = 3 and revisit it at t = 5, which avoids
collision with the yellow and red routes. This solution
incurs only 7 time units in total.

• Intra-Strip Backtracking Restriction. In intra-strip back-
tracking, a route can only wait or move forward along the
strip direction without moving backward. This restriction
accelerates backtracking, but also leads to sub-optimal
routes. As illustrated in Fig. 13, our backtracking algo-
rithm can only searches the routes shown in dash lines.
It waits till t = 4 to avoid collision with all other routes
(i.e., the green, brown, yellow and red ones). The optimal
routes are shown as the solid lines if backward search is
allowed. The route first moves towards the destination,
avoids the crossing routes (green and brown ones) at
t = 4, and then detours to avoid red and yellow crossing
routes at t = 5. The total time cost is 7 time units.

• Greedy Inter-Strip Transit. When calculating the edge
weight between two strips, we adopt a greed strategy that
confines the transit within a pair of adjacent grids that
contains the source grid. For two “side-by-side” strips,
ignorance of other adjacent grid pairs may cause sub-
optimality. As illustrated in Fig. 14, our method will force
the transit between the two strips at t = 2, thus waiting
the yellow routes till 4, and incurs 6 time units in total.
However, if we permit transit to the right strip via other
adjacent grid pairs, the optimal route will move within
the left vertex till the yellow routes leave the right strip
at t = 5, which results in 5 time units.

Theorem 1. Given a set of routes and a pair of source and
destination to be planned, the expected competitive ratio of
the planned route in terms of single route length is 1.788.

Proof. We consider the above three cases separately.
• Strip Revisit Omission. Revisiting a strip incurs at least

two extra time units (i.e., move away and back to the
strip). Thus, the optimal time cost will be at least d∗+2,
where d∗ is the length of the shortest intra-strip path.

Without revisits, the cost is d∗ + w, where w is the
waiting time. Thus, the upper bound of the competitive
ratio caused by revisit omission CRr ≤ d∗+w

d∗+2 .

E[CRr]≤ Pr[w ≤ 2] · 1 + E[
d∗ + w

d∗ + 2
|w ≥ 3]

≤ Pr[w ≤ 2] +
∑
k=3

Pr[w = k]
d∗ + k

d∗ + 2

(5)

A route is forced to wait because the grid right in front
of it is unavailable. By assuming each grid at each time
will be occupied with probability p, then Pr[w = k] =
pk(1− p). Then we have:

E[CRr] ≤ 1 +
(2p− 1)p3

(d∗ + 2)(1− p)
≤ 1 +

1

3(1− p)
(6)

As p is the probability a grid is occupied, a larger p means
more congestion. Revisits may lead to a better solution.

• Intra-Strip Backtracking Restriction. If the optimal solu-
tion contains a route moving backward of b grids. Then,
the solution will be d∗ + 2b, where d∗ is the distance
from the source to destination grid. For our method, it
provides a solution with cost d∗ + w, where w is the
waiting time. Thus, the competitive ratio of backtracking
CRb ≤ d∗+w

d∗+2b . The same as above, we can calculate the
waiting time and we have

E[CRb]≤ Pr[w ≤ 2b] · 1 + E[
d∗ + w

d∗ + 2b
|w > 2b]

= 1 +
1

(d∗ + 2b)(1− p)
≤ 1 +

1

3(1− p)

(7)

• Greedy Inter-Strip Transit. A transit via other adjacent
grid pair adds at least one time unit cost, making CRt
upper bounded by w

1 , where w is the waiting time. So,

E[CRt]≤ Pr[w ≤ 1] · 1 + E[w|w ≥ 2]≤ 1 +
p2

1− p
(8)

To sum up, the upper bound of E[CR] = max{E[CRr],
E[CRb], E[CRt]} = 1 + max{1,3p2}

3(1−p) . The numerator will be
1 only if p ≤ 0.577. Since p is the probability that a grid is
occupied, it is usually less than 0.5, otherwise the warehouse
is too congested. Thus, E[CR] ≤ 1+ 1

3(1−0.577) ≈ 1.788.

B. Time Complexity Analysis

The inter-strip route planning adopts the Dijkstra algo-
rithm. With the priority optimization, the time complexity
is |E| log |V |, where |V | and |E| are the numbers of strips
and edges. When calculating the edge weight, the algorithm
calls the intra-strip route planning which triggers backtracking
(Algorithm 2). So the time complexity is |E|T log |V |, where
T is the time complexity of backtracking.

In our strip graph, one vertex connects with four edges,
thus |E| = 2|V |. Since each strip contains multiple grids, thus
|V | = |HW |

c , where c is the average number of grids each
strip contains. As for T , we have:

T (t) =

X(n) if find routes

X(n) +
∑
τ

T (t+ τ) otherwise (9)

where t is the current time and X(n) is the time complexity
of collision detection in Sec. V-D. Thus, T = O(|w||d|(n′ +
log n′)), where |d| is the distance between the source and des-
tination grid and w is the waiting time. Similar to Sec. VII-A,
we have E[|w||d|] = O((1− p)

∑∞
k=1 k

dpk). Therefore,

E[|w||d|] = (1− p)
∞∑
k=1

kdp
d log k

log(1/p)
+1
p
k−1− d log k

log 1/p

≤ (1− p)

∞∑
k=1

p
k−1− d

log(1/p)
log k

≤ (1− p)

∞∑
k=1

p
k−1− d

log(1/p) = (
1

p
)

d
log(1/p)

(10)

Let 1/c be the ratio between the number of strips and
the number of grids, i.e., each strip contains O(c) grids.
Then we have d = O(c). So, the total time com-
plexity is O(2c (

1
p)

c
log(1/p) |HW | log |HW |

c (n′ + log n′)) =
O(|HW | log |HW |(n′ + log n′)). Because the rotation makes
it nearly a one-to-one matching, the time of collision detection
is almost constant. Finally, the time complexity is approxi-
mately O(|HW | log |HW |), which is lower than the A*-based
algorithm with a time complexity of O((|HW |)2).

VIII. EVALUATION

A. Experimental Setup

Fig. 15. Snapshot of test environment.

Datasets. We use real-world datasets for evaluations. We
choose three warehouses W-1, W-2, W-3 from different cities
with different throughput operated by Geekplus Technology2,
one of the world’s leading smart logistic companies. For each
warehouse, we extract delivery tasks with a time span of five
days. Each delivery task will incur three route planning query,
namely pickup, transmission, and return. Table II provides a
summary for our datasets. The last two columns of Table II
also show the scale reduction from raw grid-based representa-
tion to our strip-based representation. The numbers of vertices
and edges are reduced to 16% and 23% respectively, which is
aligned with the remarks in Sec. IV-A.
Test Environment. A test environment is built for algorithm
performance evaluation. The test environment simulates the
emergence of delivery tasks, and then sends the task informa-
tion to the route planning algorithm. After receiving the results
calculated by a route planning algorithm, the environment
assigns those planned routes to robots for execution. The
system will record all our metrics for comparison. Fig. 15
provides a snapshot of our test environment.

All planning algorithms together with the test environment
are implemented in Java 8. All experiments are conducted on

2https://www.geekplus.com/

TABLE II
SUMMARY OF DATASETS AND THE STRIP-BASED EXTRACTION.

Name H ×W #Rack #Robot #Picker #Tasks/103 Grid-based Strip-based
Day1 Day2 Day3 Day4 Day5 #vertices #edges #vertices #edges

W-1 233× 104 4896 408 68 45.0 46.6 27.7 33.1 33.4 24232 48464 3997 11272
W-2 240× 206 9792 952 136 41.0 45.9 34.3 79.9 63.5 49440 98880 8230 23257
W-3 292× 278 15088 2208 184 34.4 35.2 26.5 134.6 103.9 81176 162352 13526 38411

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(a) W1 Day1

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(b) W1 Day2

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(c) W1 Day3

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(d) W1 Day4

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(e) W1 Day5

Fig. 16. TC comparison on real dataset W-1 over all days.

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(a) W2 Day1

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(b) W2 Day2

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(c) W2 Day3

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(d) W2 Day4

20% 60% 100%
progress

101

102

103

104

TC
/s SRP

TWP
SAP
RP
ACP

(e) W2 Day5

Fig. 17. TC comparison on real dataset W-2 over all days.

20% 60% 100%
progress

101

102

103

104

TC
/s

SRP
SAP
RP
ACP

(a) W3 Day1

20% 60% 100%
progress

101

102

103

104

TC
/s

SRP
SAP
RP

(b) W3 Day2

20% 60% 100%
progress

101

102

103

104

TC
/s

SRP
SAP
RP

(c) W3 Day3

20% 60% 100%
progress

101

102

103

104
TC
/s

SRP
RP

(d) W3 Day4

��� 	�� ����
��������

���

���

���

���

�

��

��
��

� �� 	�
��������

�

�

�

�

�

��

�� �

��
��

227x

(e) W3 Day5

Fig. 18. TC comparison on real dataset W-3 over all days.

Intel(R) Xeon(R) Platinum 8269CY CPU T 3.10GHz with 20
GB Java virtual machine memory.
Baselines. We compare our SRP with the following baselines.

• Simple A*-based Planning (SAP). It uses a simple
A*-based planning algorithm by searching in a three
dimensional space (2-D space and 1-D time) and planning
routes one at a time. The newly planned route will avoid
collisions with existing routes.

• Replanning (RP) [3]. This algorithm adopts a replanning
strategy. It first searches the shortest path for the new
query ignoring collisions, and then if collision occurs, it
replans all collided routes together with an offline optimal
method (e.g., conflict-based search [2]).

• Time Windowed Planning (TWP) [5]. This algorithm
incorporates a time window design. Instead of planning
the entire routes, it confines the planning in a certain time
window for acceleration.

• Adaptive Cached Planning (ACP) [6]. This method uses
a cache strategy. When the route searching is close to the
destination, it will directly use the cached shortest path
and simply wait till no collision will happen.

Except SAP, the other baselines (RP, TWP, and ACP) achieve

competitive performances in online multi-agent path finding.
Particularly, TWP achieves state-of-the-art efficiency given
fewer than 1, 000 robots.

Evaluation Metrics. We use three evaluation metrics: op-
timization goal (OG), time consumption (TC) and memory
consumption (MC) to evaluate both the effectiveness and
efficiency of different algorithms.

• Optimization Goal (OG). The optimization goal of the
CARP problem is defined in Eq.(1). It is also called
“makespan”, which is widely adopted as effectiveness
evaluation for the CARP algorithm [2], [4], [5]. A smaller
value indicates better effectiveness.

• Time Consumption (TC). It is the total time consump-
tion of the planning algorithm executed in all rounds. A
smaller value indicates higher time efficiency.

• Memory Consumption (MC). It records the memory
consumption of data structures together with runtime
space consumption during execution. A smaller value
means better memory efficiency.

The unit of both OG and TC is second. Progress is the ratio
between the finished tasks and all tasks of the day.

20% 60% 100%
progress

2

4

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(a) W1 Day1

20% 60% 100%
progress

2

4

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(b) W1 Day2

20% 60% 100%
progress

2

4

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(c) W1 Day3

20% 60% 100%
progress

2

4

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(d) W1 Day4

20% 60% 100%
progress

2

4

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(e) W1 Day5

Fig. 19. MC comparison on real dataset W-1 over all days.

20% 60% 100%
progress

20

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(a) W2 Day1

20% 60% 100%
progress

20

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(b) W2 Day2

20% 60% 100%
progress

20

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(c) W2 Day3

20% 60% 100%
progress

10

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(d) W2 Day4

20% 60% 100%
progress

20

M
C
/1
00
M
B

SRP
TWP
SAP
RP
ACP

(e) W2 Day5

Fig. 20. MC comparison on real dataset W-2 over all days.

20% 60% 100%
progress

8M
C
/1
00
M
B

SRP
SAP
RP
ACP

(a) W3 Day1

20% 60% 100%
progress

8

M
C
/1
00
M
B

SRP
SAP
RP

(b) W3 Day2

20% 60% 100%
progress

8
M
C
/1
00
M
B

SRP
SAP
RP

(c) W3 Day3

20% 60% 100%
progress

4

M
C
/1
00
M
B

SRP
RP

(d) W3 Day4

20% 60% 100%
progress

8

M
C
/1
00
M
B

SRP
RP

(e) W3 Day5

Fig. 21. MC comparison on real dataset W-3 over all days.

B. Experimental Results

Time Efficiency Comparison. We first compare the time
consumption among all baselines over all datesets. Note that
the execution time consumption over some days of W-3 is
too large for certain algorithms, so we omit the comparisons.
From Fig. 16, Fig. 17 and Fig. 18, we can see that as picking
procedure goes on, the time consumption of each algorithm
steadily grows. Usually SAP is the slowest. Other algorithms
such as TWP, RP and ACP show certain accelerations, but our
algorithm steadily outperforms all the baselines. Concretely,
our algorithm is averagely executed faster than other algo-
rithms by 1.4x to 37.3x. If we compare the execution efficiency
of a snapshot (2% of one day’s procedure), the algorithm can
be 227x faster than other algorithms at most. This happens
at Day5 in W-3 (see Fig. 18), indicting our algorithm has a
powerful ability to scalability. The time efficiency is mainly
attributed to our strip-based representation, which allows fast
collision detection and path finding.

20% 60% 100%
Progress

0

20

40

60

TC
/s

Inter-strip
Intra-strip
Conversion

(a) TC breakdown.

20% 60% 100%
Progress

20

40

TC
/s

Inter-strip (w/o index)
Intra-strip (w/o index)
Inter-strip (with index)
Intra-strip (with index)

(b) TC breakdown comparison.

Fig. 22. Illustration of need for slope-based indexing.

Need for Slope-based Indexing. Fig. 22(a) shows the TC

breakdown of our SRP without slope-based indexing acceler-
ation over a single day. The time consumption is split into three
parts: inter-strip planning, intra-strip planning and conversion
between strip- and grid-based representation. As is shown,
the bottleneck lies in intra-strip planning, which calls for
acceleration. Fig. 22(b) plots the time cost with and without
slope-based indexing. With slope-based indexing, the TC of
intra-strip is reduced by around 50%.

Memory Efficiency Comparison. Fig. 19, Fig. 20 and Fig. 21
illustrate the memory consumption comparisons results. In
general, the memory consumption of each algorithm fluctuates
as the picking process goes on. The fluctuations are caused by
the dynamics of task number. We can see the spikes usually
show up at the beginning or the middle, indicating the tasks
floods in during morning or noon. Our SRP takes up smallest
memory. Most of our memory consumption is less than 1% of
the other algorithms. Specifically, SRP memory cost is 97% to
99% less than the other algorithms. This is reasonable because
our strip-based representation uses only a few of segment end
points to store a routes while other algorithms have to use a
sequence of locations.

Effectiveness Comparison.

TABLE III
EFFECTIVENESS COMPARISONS.

Name SAP RP TWP ACP SRP

W-1 43341 42983 43207 43282 43339
W-2 32200 32522 36958 33904 32090
W-3 41169 49809 42508 44799 34255

Table III shows the average OG over days. We use the mean
value to fill blanks for the algorithms that are too slow to
calculate. Our algorithm performs the best on W-2 and W-
3 and slightly under-performs on W-1. However, this tiny
gap is only 4 minutes and compared with a day’s horizon,
it can be ignored in real applications. Overall, our algorithm
is reasonably effective with drastic acceleration.

Summary of Experimental Results. Our experimental results
can be summarized as below.

• With the novel framework, our algorithm is significantly
accelerated (at most 227 × faster).

• Due to the strip-based representation, our algorithm takes
up much less memory, only 1% ˜3% to that of others.

• Even with such notable acceleration, our algorithm out-
puts reasonably effective routes in terms of makespan.

IX. RELATED WORK

A. Route Planning

The route planning processing problem has been extensively
studied in spatiotemporal research community [12]–[21].

Some research lies interests on indoor space route planning
[12]–[14]. These research notices that indoor space has its
own topological property (e.g., two points at adjacent rooms
may have a short euclidean distance, but it may require
many detours to reach each other). This topological property
makes indoor space more complicated and requires design for
representation. [12], [22] propose representations for indoor
space while other studies [13], [14] extend shortest path query
as well as other spatial queries such as distance join [23]
into indoor space. These solutions to indoor spaces cannot be
applied mainly because the collision constraints. However, our
warehouse scenario confronts with similar situation that it also
requires designing new spatial representation and furthermore
exploits the regular property for planning acceleration.

Other research studies route planning on road networks
[15]–[18], [24]. Some studies [17], [18], [25], [26] aim at
planning routes more flexible in terms of passing sequence of
points of interests. Other research studies route planning under
different contextual information [27]–[29] or temporal infor-
mation [30], [31]. [19] aims at finding location that minimizes
summation of all group members’ travel distances. [15], [24]
study shared mobility scenario, in which insertion operation is
efficient bottleneck and some dynamic programming or index
based methods are proposed for acceleration. [16] proposes a
data driven method for better performance.

Though these methods using multiple manners such as
indexing and dynamic programming for acceleration, they can
not be adapted to our problem, mainly because the spatial
layout construction upon road network is much different from
that of warehouses, which leads to hardness of collision
modeling and judgement.

B. Multi-Agent Path Finding

Multi-Agent Path Finding problem emerges when robotized
warehouses boom [6]. Formally, it requires planning paths

for multiple origin-destination pairs on a graph (usually a
grid graph) to minimize the total or maximum path length
while ensuring no collision happens if robots moving along
these paths [8]. Though proved to be NP-hard [32], traditional
methods managed to find the optimal solution using A*
based searching algorithm [2]. Recent studies propose online
variations of multi-agent path finding making it closer to
real situation. The online situation together with hardness
of reaching optimality([3]) make current works stress more
on efficiency. Existing methods [3]–[5] to online multi-agent
path finding mainly adopt the re-planning strategy and some
heuristic tricks to branch the searching space. These tricks help
A*-based search algorithms scale up to 600 pairs of origin and
destination but the time consumption is over 1 minute [4]. A
recent study simply uses cache for acceleration [6].

Though these methods all motivated by warehouse scenario,
none of them exploits the regular layout property of ware-
house. Ignoring the regular property prohibits these method
from reconstructing the spatial layout. Pure grid based model
forces existing methods use A* algorithm [7] to find the
collision-free paths. Searching in 3-D spatiotemporal space to
avoid collision results in low efficiency.

X. CONCLUSION

In this paper we explored high-efficiency solutions to the
Collision Aware Route Planning (CARP) problem in large-
scale warehouses. We observe that the regular layout of
warehouses is an overlooked opportunity for acceleration. In
response, we propose a strip-based framework to replace the
widely adopted grid-based warehouse representation. Specif-
ically, we aggregate grids in the same rows or columns
into strips and decompose the collision aware route planning
into inter- and intra-strip route planning. The decomposi-
tion makes collision judgement necessary only at intra-strip
level. The strip-based representation also transforms collision
judgement in 3-dimensional routes into intersection judge-
ment among 2-dimensional segments. We further design an
indexing strategy of segments within strips for acceleration.
Our solution reduces the time complexity from O((HW)2)
to O((HW) log(HW)), in a warehouse of H × W grids.
Experiments on real dataset show significant acceleration over
existing schemes, which holds potentials for deployments in
real-world robotized warehouses and similar applications.

ACKNOWLEDGMENTS

We are grateful to anonymous reviewers for their con-
structive comments. This work is partially supported by the
National Key Research and Development Program of China
under Grant No. 2018AAA0101100, the National Science
Foundation of China (NSFC) under Grant No. U21A20516,
U1811463 and 62076017, and the Basic Research Funding
in Beihang University No. YWF-22-L-531, WeBank Scholars
Program. Yongxin Tong is the corresponding author in this
paper.

REFERENCES

[1] R. Bogue, “Growth in e-commerce boosts innovation in the warehouse
robot market,” Ind. Robot, vol. 43, no. 6, pp. 583–587, 2016.

[2] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[3] J. Švancara, M. Vlk, R. Stern, D. Atzmon, and R. Barták, “Online multi-
agent pathfinding,” in AAAI, vol. 33, no. 01, 2019, pp. 7732–7739.

[4] J. Li, W. Ruml, and S. Koenig, “eecbs: A bounded-suboptimal search
for multi-agent path finding,” in AAAI, 2021, pp. 12 353–12 362.

[5] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and S. Koenig,
“Lifelong multi-agent path finding in large-scale warehouses,” in AAAI,
2021, pp. 11 272–11 281.

[6] D. Shi, Y. Tong, Z. Zhou, K. Xu, W. Tan, and H. Li, “Adaptive task
planning for large-scale robotized warehouses,” in ICDE, 2022.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, 1968.

[8] R. Stern, N. R. Sturtevant, A. Felner, and et al, “Multi-agent pathfinding:
Definitions, variants, and benchmarks,” in SOCS, 2019, pp. 151–159.

[9] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959. [Online]. Available:
https://doi.org/10.1007/BF01386390

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

[11] L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced
trees,” in FOCS, 1978, pp. 8–21.

[12] H. Lu, X. Cao, and C. S. Jensen, “A foundation for efficient indoor
distance-aware query processing,” in ICDE, 2012, pp. 438–449.

[13] X. Xie, H. Lu, and T. B. Pedersen, “Efficient distance-aware query
evaluation on indoor moving objects,” in ICDE, 2013, pp. 434–445.

[14] T. Liu, Z. Feng, H. Li, H. Lu, M. A. Cheema, H. Cheng, and J. Xu,
“Shortest path queries for indoor venues with temporal variations,” in
ICDE, 2020, pp. 2014–2017.

[15] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” PVLDB, vol. 11, no. 11,
pp. 1633–1646, 2018.

[16] J. Wang, P. Cheng, L. Zheng, C. Feng, L. Chen, X. Lin, and Z. Wang,
“Demand-aware route planning for shared mobility services,” PVLDB,
vol. 13, no. 7, pp. 979–991, 2020.

[17] M. Sharifzadeh, M. R. Kolahdouzan, and C. Shahabi, “The optimal
sequenced route query,” VLDBJ, vol. 17, no. 4, pp. 765–787, 2008.

[18] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k optimal sequenced
routes,” in ICDE, 2018, pp. 569–580.

[19] T. Hashem, T. Hashem, M. E. Ali, and L. Kulik, “Group trip planning
queries in spatial databases,” in SSTD, vol. 8098. Springer, 2013, pp.
259–276.

[20] X. Li, W. Luo, M. Yuan, J. Wang, J. Lu, J. Wang, J. Lü, and J. Zeng,
“Learning to optimize industry-scale dynamic pickup and delivery
problems,” in ICDE, 2021, pp. 2511–2522.

[21] H. Cheng, S. Wei, L. Zhang, Z. Zhou, and Y. Tong, “Engaging drivers in
ride hailing via competition: A case study with arena,” in MDM. IEEE,
2021, pp. 19–28.

[22] Z. Shao, M. A. Cheema, D. Taniar, and H. Lu, “Vip-tree: An effective
index for indoor spatial queries,” PVLDB, vol. 10, no. 4, pp. 325–336,
2016.

[23] X. Xie, H. Lu, and T. B. Pedersen, “Distance-aware join for indoor
moving objects,” TKDE, vol. 27, no. 2, pp. 428–442, 2015.

[24] Y. Zeng, Y. Tong, Y. Song, and L. Chen, “The simpler the better: An
indexing approach for shared-route planning queries,” PVLDB, vol. 13,
no. 13, pp. 3517–3530, 2020.

[25] X. Cao, L. Chen, G. Cong, and X. Xiao, “Keyword-aware optimal route
search,” PVLDB, vol. 5, no. 11, pp. 1136–1147, 2012.

[26] J. Li, Y. D. Yang, and N. Mamoulis, “Optimal route queries with
arbitrary order constraints,” TKDE, vol. 25, no. 5, pp. 1097–1110, 2013.

[27] G. Skoumas, K. A. Schmid, G. Jossé, M. Schubert, M. A. Nascimento,
A. Züfle, M. Renz, and D. Pfoser, “Knowledge-enriched route compu-
tation,” in SSTD, vol. 9239. Springer, 2015, pp. 157–176.

[28] X. Fei, O. Gkountouna, D. Pfoser, and A. Züfle, “Spatiotemporal bus
route profiling using odometer data,” in SIGSPATIAL, 2019, pp. 369–
378.

[29] B. Zheng, H. Su, W. Hua, K. Zheng, X. Zhou, and G. Li, “Efficient
clue-based route search on road networks,” TKDE, vol. 29, no. 9, pp.
1846–1859, 2017.

[30] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou, “Efficient route
planning on public transportation networks: A labelling approach,” in
SIGMOD, 2015, pp. 967–982.

[31] L. Li, J. Kim, J. Xu, and X. Zhou, “Time-dependent route scheduling
on road networks,” SIGSPATIAL, vol. 10, no. 1, pp. 10–14, 2018.

[32] P. Surynek, “An optimization variant of multi-robot path planning is
intractable,” in AAAI, 2010.

