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The boom of e-commerce has stimulated enormous logistic demands
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Robotized warehouses are expected to improve the performance
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Background & Motivation

e A typical robotized warehouse
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Task planning algorithms are the key to improve the efficiency
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Problem Statement

e Robotized Warehouse Scenario
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e Robotized Warehouse Scenario

Rack =" Robot Picker
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e Robotized Warehouse Scenario
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Problem Statement
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e Robotized Warehouse Scenario
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Problem Statement

e Robotized Warehouse Scenario
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e Optimization Goals: Minimizing the Makespan

Makespan: M =t, — t,

A
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Problem Statement

e Constraints: Conflict-Free
o All paths for robots should be conflict-free

e Two types of conflict

o Single-Grid Conflict By —

o Two robots try to visit one grid at the same time,

causing single-grid conflict.

e Inter-Grid Conflict

o Two robots try passing over each other, causing
inter-grid conflict.

Note: We model the space in a grid-based manner.
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Problem Statement 2

e Challenges
o Inflexible planning to time-varying item arrival

K - I | I - (e [y

When #items is small
Bottleneck: Transmission (pickup, delivery, returning)
No queuing, processing time is short.

Time cost

#items
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e Challenges
o Inflexible planning to time-varying item arrival

=N - I | I - e

When #items is small
Bottleneck: Transmission (pickup, delivery, returning)
No queuing, processing time is short.

;

When #items is large
Bottleneck: queuing and processing
Transmission time is far more shorter

Time cost

#items Not:a: We call this phenomenon as “bottleneck variation”
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e Challenges
o Inefficient planning for massive robots and items

Calls for efficient design

v
O

@ Constrain
Conflict-free

Multi-Agent Path Finding [1] Problem
@ I Goal Time consuming

Minimize path length -

Existing research
> Proved to be NP-Hard [2]
Branching & Bound Search [3]

[1] R. Stern, et al, Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks, SoCS’19.
[2] P. Surynek, An optimization variant of multi-robot path planning is intractable, AAAI’10.
[3] G. Sharon, Conflict-based search for optimal multi-agent pathfinding, Al’15.
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Our Solutions

e System overview

Efficient Adaptive Task Planning (EATP)

Markov Decision Process
Model (Sec. V-A)

2 lrain

Q-Learning Based Model
Training (Sec. V-B)

Adaptive Task Planning (Sec. V)

Path Finding on

V-C)

Spatiotemporal Graph (Sec.

3 Send selection scheme §;

‘.Speedup

‘.‘Speedup

Optimization for
Rack Selection
(Sec. VI-A)

Spatiotemporal Data )—1

Efficiency Optimizations for Adaptive Task Planning (Sec. VI)

Optimization for
Path Finding
(Sec. VI-B)

Picker Rark Roliot
1 Collect spatiotemporal data

4 Send planning scheme U,
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e Workflow
Step 1 Step 2 Step 3 Step 4
Data Collection Training Rack Selection Path Finding
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. Conflict detection table = Cache
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Our Solutions

e Workflow: 1 Data Collection

Arack r:(l,., t,,p;)
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e Workflow
Step 1 Step 2 Step 3 Step 4
Data Collection Training Rack Selection Path Finding
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Our Solutions

e Workflow: 2 Training

- . )
4 Markov Decision Process
i _ Model
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Our Solutions

e Workflow: 2 Training

» Why this design can be/ State
adaptive? States capture coupling

between racks and pickers.

~
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variations.

4 Reward

¢ = —max{fy, d(l 1 )} + Yier, i
Rewards capture the bottleneck
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e Workflow

Step 1 Step 2 Step 3 Step 4
Data Collection Training Rack Selection Path Finding
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e Workflow: 3 Rack Selection
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e Workflow: 4 Path Finding
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Experiments

e Validation Environment

o Dataset
o Synthesized and real data from Geekplus Technology Co., Ltd.

o Simulator
o Collects information of robots, racks and pickers, executes task planning algorithm.

Robot’s processing rate

Simulator

1109 ! Robot heat map

55
50
45
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600 ; 3
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200 — -
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Experiments

e Validation Environment

Robot’s processing rate Picker’s processing rate

tirhe - N - ‘ A timé
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Experiments

e Validation Environment

Dataset
Synthesized and real data from Geekplus Technology Co., Ltd.

Simulator
Collects information of robots, racks and pickers, executes task planning algorithm.
¢ Running Information
CPU: CPU Intel(R) Xeon(R) Platinum 8269CY CPU T 3.10GHz
Memory: 20GB

o Parameter Setting
€ —greedy: e =0.1
Learning rate: § =0.1
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Experiments o

o Comparing methods
NTP[1]: selects racks whose corresponding picker finishes picking earliest
LEF[2]: selects racks whose items are emerged earliest
ILP[3]: integer linear programming based solution

o Evaluation metrics
Makespan
Picker’s Processing Rate (PPR): ratio of picker’s processing time to total time
Robot’s Working Rate (RWR): ratio of robot’s working time to total time
Selection Time Consumption (STC): time consumption of selection procedure
Planning Time Consumption (PTC): time consumption of path planning procedure

[1] H. Ma, et al, Lifelong multi-agent path finding for online pickup and delivery tasks,” AAMAS’17.
[2] D. Deng, et al, Task selection in spatial crowdsourcing from worker’s perspective, Geolnformatica’16.
[3] N. Boysen, et al, Parts-to-picker based order processing in a rack-moving mobile robots environment, EJOR’17.



Experiments

o Makespan Comparison
o Lower values mean better performances

Syn-B Real-Norm Real-Large

NTP 229,865 222,044 264,139

LEF 68,736 225,484 176,317 -

ILP 72,423 219,555 173,446 -

ATP (Ours) 60,193 209,531 165,438 220,257

EATP (Ours) 60,753 209,866 164,628 220,263

Our ATP/EATP performs best among all other methods over all datasets



Experiments

e PPR/RWR Comparison

» Higher values mean better performances

1.01 o —a 1.0 %__ﬁf\% 1.0 R 1.01 7,4 —
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2014 % 006 R T T
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(f) RWR on Syn-B

(g) RWR on Real-Norm

(h) RWR on Real-Large

Our ATP/EATP schedules robots and pickers more sufficiently



Experiments

o Efficiency Comparison
o Lower values mean better performances
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Our EATP is more efficient than other methods
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o Case Study

Selected at t = 392

Transmit rack with
only 2 items to pick

A" bottleneck:
transport

Selected at t = 2508

Transmit rack with
10 items to pick.

\{cost/lO4 \
S R A D \X

transport
queuing

—— processing

)

Selected at t = 9974

Transmit rack with 47
items to pick.

bottleneck:
queuing

o

j ttleneck: transport
‘s queuing

Variations of number of items cause the bottleneck variations.
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Conclusion

o We propose a task planning algorithm for robotized
warehouses, aiming to sense bottleneck variations
and adaptively make decisions.

o We devise an efficient path finding algorithm which
approximately searches for conflict-free paths.

o Experiments on real history data validate the
performances on effectiveness and efficiency.
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