Adaptive Task Planning for Large-Scale **Robotized Warehouses**

Dingyuan Shi¹, Yongxin Tong¹, Zimu Zhou², Ke Xu¹, Wenzhe Tan³, Hongbo Li³ **1** Beihang University **2** Singapore Management University **3 Geekplus Technology Co., Ltd.**

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Background & Motivation

ARKETS BUSINESS INVESTING TECH POLITICS CNBC TV WATCHLIST CRAMER PRO 🖻

Alibaba, JD set new records to rack up record \$115 billion of sales on Singles Day as regulations loom

PUBLISHED THU, NOV 12 2020-12:19 AM EST | UPDATED THU, NOV 12 2020-8:15 AM EST

The boom of e-commerce has stimulated enormous logistic demands

Background & Motivation

Some companies and their products/services

Geek+

Robotized warehouses are expected to improve the performance

• A typical robotized warehouse

• A typical robotized warehouse

• A typical robotized warehouse

Task planning algorithms are the key to improve the efficiency

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Note: Items emerge dynamically.

Problem Statement

Problem Statement

17

Problem Statement

• Optimization Goals: Minimizing the Makespan

- Constraints: Conflict-Free
 - All paths for robots should be conflict-free
- Two types of conflict
 - Single-Grid Conflict
 - Two robots try to visit one grid at the same time, causing single-grid conflict.
 - Inter-Grid Conflict
 - Two robots try passing over each other, causing inter-grid conflict.

Note: We model the space in a grid-based manner.

Challenges

Inflexible planning to time-varying item arrival

Challenges

Inflexible planning to time-varying item arrival

Challenges

Inefficient planning for massive robots and items

[1] R. Stern, et al, Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks, SoCS'19.
[2] P. Surynek, An optimization variant of multi-robot path planning is intractable, AAAI'10.
[3] G. Sharon, Conflict-based search for optimal multi-agent pathfinding, AI'15.

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

• System overview

Workflow

Workflow: 1 Data Collection

Workflow

• Workflow: 2 Training

• Workflow: 2 Training State • Why this design can be $\langle ap_r, ar_r \rangle$ adaptive? **States capture coupling** between racks and pickers. variations. ar_r ap_r Reward . . . 0 picker p_1 . . . Reward picker p_2

Workflow

Workflow: 3 Rack Selection

Workflow

Workflow: 4 Path Finding

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Validation Environment

- Dataset
 - Synthesized and real data from Geekplus Technology Co., Ltd.
- Simulator
 - Collects information of robots, racks and pickers, executes task planning algorithm.

• Validation Environment

8 8 8 8 8 8 8 8 į. -** ** ų, ** 18 H 18 H 8 8 8 8 8 3 B 3 B ä . *** 8 8 8 8 8 8 8 8 N N N N N N 1 H H 8.8 1 H H H H H H H 8.8 88 28 28 28 28 3 8 1 11 13 14 13 14 13 . . *** 88 8 3 Ĩ 8 8 8 8 8 8 8 8 12 a 18 18 8 H 8 H 31 25 H ** h 88 8 8 8 9 8 8 N N N N N N ** 2 8.8 88 88 8 8 ** ** N N N N 8 8 8 8 88 N N N N N N N 2 *** 25 25 8 8 ۰, 5 5 5 5 5 5 5 5 5 5 U. *** 8 8 ** 3 N N N N N NNN 8 8 8 8 8 8 . 12

Picker's processing rate

Validation Environment

- Dataset
 - Synthesized and real data from Geekplus Technology Co., Ltd.
- Simulator
 - Collects information of robots, racks and pickers, executes task planning algorithm.
- Running Information
 - CPU: CPU Intel(R) Xeon(R) Platinum 8269CY CPU T 3.10GHz
 - Memory: 20GB
- Parameter Setting
 - ϵ –greedy: ϵ = 0.1
 - Learning rate: $\beta = 0.1$

• Comparing methods

- NTP[1]: selects racks whose corresponding picker finishes picking earliest
- LEF[2]: selects racks whose items are emerged earliest
- ILP[3]: integer linear programming based solution

Evaluation metrics

- Makespan
- Picker's Processing Rate (PPR): ratio of picker's processing time to total time
- Robot's Working Rate (RWR): ratio of robot's working time to total time
- Selection Time Consumption (STC): time consumption of selection procedure
- Planning Time Consumption (PTC): time consumption of path planning procedure

[1] H. Ma, et al, Lifelong multi-agent path finding for online pickup and delivery tasks," AAMAS'17.
[2] D. Deng, et al, Task selection in spatial crowdsourcing from worker's perspective, GeoInformatica'16.
[3] N. Boysen, et al, Parts-to-picker based order processing in a rack-moving mobile robots environment, EJOR'17.

Makespan Comparison

• Lower values mean better performances

	Syn-A	Syn-B	Real-Norm	Real-Large
NTP	95,713	229,865	222,044	264,139
LEF	68,736	225,484	176,317	-
ILP	72,423	219,555	173,446	-
ATP (Ours)	60,193	209,531	165,438	220,257
EATP (Ours)	60,753	209,866	164,628	220,263

Our ATP/EATP performs best among all other methods over all datasets

PPR/RWR Comparison

Higher values mean better performances

Our ATP/EATP schedules robots and pickers more sufficiently

Efficiency Comparison

Lower values mean better performances

Our EATP is more efficient than other methods

Case Study

Variations of number of items cause the bottleneck variations.

Outline

- Background & Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

 We propose a task planning algorithm for robotized warehouses, aiming to sense bottleneck variations and adaptively make decisions.

- We devise an efficient path finding algorithm which approximately searches for conflict-free paths.
- Experiments on real history data validate the performances on effectiveness and efficiency.

Thank You