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The boom of e-commerce has stimulated enormous logistic demands



l Some companies and their products/services
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Robotized warehouses are expected to improve the performance



l A typical robotized warehouse
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l Robotized Warehouse Scenario
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Note: Items emerge dynamically.
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l Robotized Warehouse Scenario

Problem Statement 18

Task Planning
Algorithm

Rack
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Output
Selection scheme： set of racks to be delivered
Paths: instructs robots to pickup deliver and return

Calls at every timestep



l Optimization Goals: Minimizing the Makespan
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𝒕

Makespan: 𝑴 = 𝒕𝒆 − 𝒕𝒃

𝒕𝒃: time of the first 
picking item emerges

𝒕𝒆: time of the last 
rack returned

An item emerges, the rack 
requires delivering.

The last rack has 
been returned.

Processing by 
pickers and robots.



l Constraints: Conflict-Free
l All paths for robots should be conflict-free

l Two types of conflict
l Single-Grid Conflict

o Two robots try to visit one grid at the same time, 
causing single-grid conflict.

l Inter-Grid Conflict
o Two robots try passing over each other, causing 

inter-grid conflict.

Problem Statement 20

Note: We model the space in a grid-based manner.



l Challenges
l Inflexible planning to time-varying item arrival
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When #items is small
Bottleneck: Transmission (pickup, delivery, returning)
No queuing, processing time is short.
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l Inflexible planning to time-varying item arrival
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Pickup Queuing Processing ReturningDelivery

When #items is small
Bottleneck: Transmission (pickup, delivery, returning)
No queuing, processing time is short.

When #items is large
Bottleneck: queuing and processing
Transmission time is far more shorter

Note: We call this phenomenon as “bottleneck variation”
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l Challenges
l Inefficient planning for massive robots and items

Problem Statement 23

Calls for efficient design

Goal
Minimize path length

Constrain
Conflict-free

Multi-Agent Path Finding [1]

Existing research
Proved to be NP-Hard [2]
Branching & Bound Search [3]

Problem
Time consuming

[1] R. Stern, et al, Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks, SoCS’19.
[2] P. Surynek, An optimization variant of multi-robot path planning is intractable, AAAI’10.
[3] G. Sharon, Conflict-based search for optimal multi-agent pathfinding, AI’15.
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l System overview

Our Solutions 25
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l Workflow
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l Workflow： 2 Training
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State: 𝒔 =< 𝒂𝒑𝒓, 𝒂𝒓𝒓 >
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Model

Q-learning
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l Workflow： 2 Training
l Why this design can be 

adaptive?
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< 𝑎𝑝1, 𝑎𝑟1 >
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𝑐 = −(𝑓! + ∑"∈$! 𝑖)
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…

picker 𝑝'

…
𝑎𝑝%

𝑎𝑟%

States capture coupling 
between racks and pickers.

Rewards capture the bottleneck 
variations.
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𝑐 = −max 𝑓0, 𝑑 𝑙1, 𝑙0( + ∑2∈4( 𝑖

processing
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l Workflow: 3 Rack Selection
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l Workflow: 4 Path Finding
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l Validation Environment
l Dataset

o Synthesized and real data from Geekplus Technology Co., Ltd.
l Simulator

o Collects information of robots, racks and pickers, executes task planning algorithm.

Experiments 36

Simulator

Robot heat map

Total tasks

Total tasks

Assigned tasks

Robot’s processing rate

RPR distribution

Picker’s processing rate
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l Validation Environment
l Dataset

o Synthesized and real data from Geekplus Technology Co., Ltd.
l Simulator

o Collects information of robots, racks and pickers, executes task planning algorithm.

l Running Information
l CPU: CPU Intel(R) Xeon(R) Platinum 8269CY CPU T 3.10GHz
l Memory: 20GB

l Parameter Setting
l 𝝐 −greedy: 𝝐 = 𝟎. 𝟏
l Learning rate: 𝜷 = 𝟎. 𝟏

Experiments 38



l Comparing methods
l NTP[1]: selects racks whose corresponding picker finishes picking earliest
l LEF[2]: selects racks whose items are emerged earliest
l ILP[3]: integer linear programming based solution

l Evaluation metrics
l Makespan
l Picker’s Processing Rate (PPR): ratio of picker’s processing time to total time
l Robot’s Working Rate (RWR): ratio of robot’s working time to total time
l Selection Time Consumption (STC): time consumption of selection procedure
l Planning Time Consumption (PTC): time consumption of path planning procedure

Experiments 39

[1] H. Ma, et al, Lifelong multi-agent path finding for online pickup and delivery tasks,” AAMAS’17.
[2] D. Deng, et al, Task selection in spatial crowdsourcing from worker’s perspective, GeoInformatica’16.
[3] N. Boysen, et al, Parts-to-picker based order processing in a rack-moving mobile robots environment, EJOR’17.



l Makespan Comparison
l Lower values mean better performances

Experiments 40

Our ATP/EATP performs best among all other methods over all datasets

Syn-A Syn-B Real-Norm Real-Large

NTP 95,713 229,865 222,044 264,139

LEF 68,736 225,484 176,317 -

ILP 72,423 219,555 173,446 -

ATP (Ours) 60,193 209,531 165,438 220,257

EATP (Ours) 60,753 209,866 164,628 220,263



l PPR/RWR Comparison
l Higher values mean better performances

Experiments 41

Our ATP/EATP schedules robots and pickers more sufficiently



l Efficiency Comparison
l Lower values mean better performances

Experiments 42

Our EATP is more efficient than other methods



l Case Study

Experiments 43

Variations of number of items cause the bottleneck variations.

bottleneck: 
transport

bottleneck:  transport 
queuing

bottleneck: 
queuing

Selected at 𝒕 = 𝟑𝟗𝟐

Selected at 𝒕 = 𝟐𝟓𝟎𝟖

Selected at 𝒕 = 𝟗𝟗𝟕𝟒
Transmit rack with 
only 2 items to pick

Transmit rack with 
10 items to pick.

Transmit rack with 47 
items to pick.
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l We propose a task planning algorithm for robotized 
warehouses, aiming to sense bottleneck variations 
and adaptively make decisions.

l We devise an efficient path finding algorithm which 
approximately searches for conflict-free paths.

l Experiments on real history data validate the 
performances on effectiveness and efficiency.

Conclusion 45
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