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Abstract

The success of artificial intelligence (AI) is inseparable from large-scale and high-quality data, which is
not always available. Involving human forces like crowdsourcing can help provide more training data and
improve data quality for AI tasks. But with more privacy concerns and stricter laws, the data isolation
problem is becoming worse, just when federated learning (FL) has emerged as a promising solution. In
this article, we highlight the core issues in federated learning in the lens of crowdsourcing, including
privacy and security, incentive mechanism, communication optimization and quality control. We expect to
inspire the design of federated learning systems with existing crowdsourcing techniques. We also discuss
emerging future challenges to implement a fully fledged federated learning platform.

1 Introduction

Artificial intelligence (AI) has come to a golden age. With the help of big data, new learning algorithms and
powerful computing hardware, AI has shown huge potential in many real-life applications, such as image
recognition and text processing. However, its success highly relies on large-scale and high-quality training data,
which is not always available.

Involving human forces proves effective in either providing more training data or improving the data quality
for AI tasks. In particular, crowdsourcing [1, 2], is one of the most practical solutions to data problems in AI. It is
a computation paradigm where humans are gathered to collaboratively accomplish easy tasks. A representative
example of crowdsourcing empowered AI is the famous ImageNet project [3], where most pictures are labeled
by crowdsourced workers. The Amazon Mechanical Turk (AMT) is one of the most successful commercial
crowdsourcing platforms, where a large number of data labeling tasks with monetary rewards are provided by AI
practitioners for freelancers.

The lack of large-scale training data is becoming more severe in recent years. In many industries, data are
often isolated by different companies or organizations. Because of commercial competition and administrative
issues, they would not like to share their data. They have to train models separately with their own data but the
performance is often unsatisfactory due to the lack of data. Meanwhile, with people’s increasing awareness on
data security and individual privacy, data privacy in AI is becoming increasingly important. Many countries
are enacting strict laws to protect the data privacy of their citizens. For example, EU’s General Data Protection
Regulation (GDPR) which was enforced on May 25, 2018, has stipulated that any use of personal data in a
company must be authorized by the data owners. Therefore, privacy issues exacerbate the data isolation problem.
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Figure 1: Comparison between crowdsourcing and federated learning.

Federated learning (FL) [4, 5, 6] has emerged as a promising solution to the data isolation problem in AI.
First proposed by Google, FL aims to collaboratively build machine learning models with data from massive
mobile devices without violating data privacy. As with crowdsourcing, FL also organizes humans, their devices
and data, to collaborate on specific tasks. Therefore, FL can be considered as a special form of crowdsourcing. In
this paper, we propose to understand federated learning from the lens of crowdsourcing. The characteristics of FL
in the core issues of generic crowdsourcing and the unique issues of FL are summarized as below.

• Privacy and security. The most important issue in FL is privacy protection, whereas privacy is of less
concerns in general crowdsourcing. Secure machine learning algorithms often play a central role in FL.

• Incentive mechanism. Both FL and general crowdsourcing need to motivate participants. However,
there are two differences. The incentive mechanism in many crowdsourcing applications is based on the
Business-to-customer (B2C) mode while in FL it can also be the Business-to-business (B2B) mode, as the
participators in FL can be different companies. The incentive procedure in crowdsourcing is often a single
round, while in FL it takes multiple rounds following the training steps in machine learning, which makes
the design of incentive mechanisms more difficult.

• Communication optimization. In crowdsourcing the communication overhead is usually not a problem
as each participant only has to submit small data (like the label of a picture) for a single round. However,
in FL it can be a core issue because the training process often involves frequent communication of high
dimensional gradients.

• Quality control. Optimizing the collaboration results is crucial both in crowdsourcing and FL. The
difference is that in crowdsourcing the task is simple and the focus is to improve the accuracy of integrated
results with a constrained budget. The task in FL is more complicated, and the focus lies in how to deal

27



Completely Periodic Protection

Data Collection

User Devices

Data Silos

Model Training

Server
Training

、Byzantine Attack
Backdoor Attack

Model

Malicious Nodes

Infer
ence

Attac
k

、

、

Model Using

Benign Queriers

Malicious Queriers

Perturbation
Encryption

Detection

Privacy Leak Risk

User Privacy Protection Model Security Protection

Figure 2: Completely periodic protection in federated learning.

with the heterogeneity of different parties such as non independently and identically distributed data and
imbalanced computation resources.

• Task assignment. Task assignment is a core component in a crowdsourcing platform [7, 8], which needs
to manage massive tasks and workers and to effectively allocate the resources. The assignment results can
decide the practical performance of the platform. In FL, task assignment may not be an issue, as there is
only one learning task in most cases.

This paper discusses the above core issues in federated learning from the perspective of crowdsourcing. The
aim is to inspire the design of federated learning systems with existing techniques in crowdsourcing platforms. We
also pinpoint future challenges to implement a fully fledged federated learning platform following the principles
of crowdsourcing.

2 Privacy and Security

In general crowdsourcing, workers and users only provide some necessary information such as worker skills or
positions which only leaks little privacy. Existing privacy protection techniques like anonymization and encryption
are sufficient to protect such information. However, in federated learning, the protection object becomes massive
user data which is more sensitive and easier to leak privacy when external knowledge is used. Furthermore,
compared with crowdsourcing, federated learning makes it harder to judge the benignity of user uploads. This is
because machine learning models are black boxes and it is non-trivial to explain the contribution of user uploads.
Accordingly, it is possible for malicious users to upload information and thwart model training.

A federated learning system is expected to offer periodic protection on both user data privacy and model
security, as shown in Figure 2. Specifically, a safe-to-use federated learning framework should (i) collect and use
user data privately and (ii) ensure that the model converges without poisoning and will not be stolen.
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2.1 Data Privacy Protection

In federated learning, for each participator, the server and other participators cannot be easily trusted. Direct
uploading of raw data can lead to privacy leaks. Uploading model parameters instead of raw data seems safer,
which is also allowed in the most recognized algorithm FedAvg [5]. Some recent findings, however, show that
only with model parameters, a malicious attacker can still deploy inference attack to judge membership or even
reconstruct the raw data [9]. Therefore, we need to design privacy protection protocols for federated learning,
which mainly include two techniques: perturbation and encryption.
Perturbation. Perturbation techniques require participators to inject noise to their raw data or intermediate
results, making others hard to infer what they have uploaded. To quantitatively analyze the degree of noise
injection, a widely accepted measure is differential privacy (DP), proposed by Dwork [10]. Its idea is to quantify
the degree of indistinguishability by probability distributions. The DP measurement is firstly brought up and
applied in database. In the field of federated learning, however, a big challenge derives from the long iterative
process and from massively distributed data. For each participator and in each iteration, DP should always be
satisfied. Ensuring such strict privacy protection requires strong noise to be injected, which severely deteriorates
data accuracy. To prevent privacy cost from boosting wildly with iteration rounds, moments accountant [11] has
been proposed. It can make the privacy budget increase sub-linearly (square root) to iteration rounds. As for
large node numbers, shuffle model [12] techniques effectively cut down privacy budgets by ensuring anonymity.
Besides supervised learning, DP has also been applied to unsupervised algorithms like topic modeling [13, 14].
Encryption. Perturbation technique can be considered as a balance between privacy levels and data accuracy.
Nevertheless, perfect secrecy cannot be achieved as exposure of little private information always exists. Encryption
techniques, on the other hand, aim to directly circumvent such exposure, i.e., to calculate via ciphertexts. Several
existing encryption techniques can be applied to federated learning, such as secure multiparty computation (SMC),
homomorphic encryption (HE) and garbled circuits (GC). Bonawitz et al use pseudo random vectors as a mask to
cover the raw updates and those random vectors can neutralize each other after aggregation [15]. Using HE to
protect user privacy demands a protocol via which the server can aggregate the ciphertexts from each device and
finally decipher the result [16]. Besides software level solutions, hardware solutions are also worth considering
such as the trusted execution environment (TEE).

2.2 Model Security Protection

Model security refers to that the model converges to a global optimum and the results can be used safely. Model
security can be violated by multiple types of attacks.
Byzantine Attack. Byzantine attack is a classical attack in distributed networks. Attackers aim to disturb the
model training process and make the model unable to converge. In FL, the malicious nodes (Byzantine nodes)
will upload random vectors to mislead the aggregated gradient descent direction and thus obstruct the model
convergence. The core idea to detect Byzantine attack is to evaluate and to spot the outliers among user uploads.
Intuitively, examining the angle between different vectors’ directions may be a solution [17]. Another intuitive
way is to use the distance to median values as an outlier judgement and its effectiveness is also verified in [18].
By maintaining a non-Byzantine node set while training, the later solution reaches lower time complexity.
Backdoor Attack. By deploying Byzantine attack detection techniques, we can ensure the convergence of
model training. However, some higher-level attackers (nodes) can cheat the Byzantine detector by uploading
plausible updates and force the model to converge to a point where some subtasks or intentionally designed
misclassification are achieved. For example, the attacker may hope to make a spelling prompt model always
provide some specific words (A restaurant owner hopes her restaurant name be prompted after a user types “My
favorite restaurant is...”). To realize this, unlike Byzantine attackers who simply upload random vectors, they
will use data poisoning or model poisoning techniques. The purpose of data poisoning is to train models with
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Figure 3: Mechanism design over all periods.

intentionally mislabeled or polluted data while model poisoning refers to that malicious nodes train and upload
local models with training goals different from the global model. To tackle data or model poisoning, we can
evaluate the approximated loss upper bound and remove outliers before local model aggregation [19].
Model Stealing. Equipped with Byzantine and backdoor attack detectors, a federated learning system is able to
safely train a model. However, we also need to provide protection for model use. Model stealing happens when
the model is confidential and can only be used via APIs (i.e., Machine-Learning-as-a-Service, MLaaS). In that
case, attackers may use the APIs to infer the model structure and parameters, and the confidential information
of the model is exposed. In federated learning, this may happen when one of the participators wants to forcibly
occupy all the outcomes. To prevent this, we can deploy a detector to examine the frequency of API queries and
judge whether the query sequence is benign [20].

3 Incentive Mechanism

Both general crowdsourcing and FL involve multiple human participators. Thus suitable incentive mechanisms
are necessary to attract people to actively contribute to the tasks. In traditional crowdsourcing, some tasks may be
less attractive to workers due to distance, difficulty or other reasons. Therefore, the platform needs to motivate the
workers with additional rewards [21]. For FL, incentive mechanism design is more difficult. This is because the
black-box nature of many machine learning models makes it tricky to evaluate each participator’s contribution.
Furthermore, the number of participators in FL, especially in cross-device settings, can be much larger than in
traditional crowdsourcing.

The mechanisms for FL should be incentive-compatible and fairness-aware. They can be accomplished
before, during and after training process, as shown in Figure 3.
Mechanisms before Training. Designing mechanisms to incite participators before training means to establish
suitable rules for data trading. In the past decade several data markets and data sharing platforms such as Dawex1,
Xignite2 and WorldQuant3 have been developed. They all hope to build a data trading platform where companies

1https://www.dawex.com
2https://www.xignite.com
3https://www.worldquant.com
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and users can buy, sell and exchange data with satisfactory prices to all parties. However, this goal is hard to
reach. As Fernandez et al point out, different combinations of data may produce different levels of values[22], so
instead of setting static price for data, people seek to find dynamic evaluation methods.
Mechanisms during Training. The goal of designing mechanisms during training is to incite the participators
to use their best data for training. To achieve the goal, participators who contribute the most deserve the highest
reward. Many researchers model the training process as a Stackelberg game[23]. There are two stages in this
setting. In the first stage, the server receives updates from each user and distributes rewards base on their
contributions to the model. In the second stage, users change their update strategies based on the rewards they
receive. Then the cycle repeats until all the server and users converge to equilibrium. Chen et al study mechanism
design of federated learning from a game theoretical and optimization perspective. Recent years blockchain
emerges as a novel technique and raises wide-spread research enthusiasm. It is also an alternative technique to
design incentive mechanisms. One way to combine blockchain with mechanism design is to build a reputation
record by the blockchain[24]. Owing to the immutability and consensus of blockchain, users’ reputation would be
hard to recover once it gets damaged and thus the participators will behave honestly to maintain their reputations.
Mechanisms after Training. In cross-silo federated learning settings the companies cooperate with each other
to train a global model and the rewards (profits) mainly come from the model use. Distributing the profits fairly
requires designing mechanisms that can evaluate each entity’s contribution to the final model. Shapley value is a
classical concept in game theory to evaluate contributions and can also be applied in profit sharing in federated
learning. The drawback is that the calculation of Shapley values is time-consuming. As a result, Song et al
propose a novel accleration technique to make it practical[25].

4 Communication Optimization

Crowdsourcing platforms usually do not care the communication overhead. Tasks like labeling the images
require the workers to upload very few data for a single round. The workers can submit their results separately
and occasionally. Hence there is not much pressure on the server’s communication bandwidth. However, the
communication cost becomes a primary bottleneck for FL. Model training algorithms like the stochastic gradient
descent (SGD) take a large number of rounds to converge. Besides, unlike the powerful servers in distributed
learning, the nodes in FL are massively distributed mobile devices with limited communication bandwidth and
active time, which makes the problem even more challenging.

Many methods have been proposed to improve the communication efficiency of FL. Two basic ideas are to
either reduce the number of interactions between parties and the server or to compress the data in transmission.
These two ideas can also be combined. Some representative techniques are explained as below.

4.1 Interactive Number Reduction

There are three different ways to reduce the number of interactions during the federated learning process: client
sampling, local updating, and decentralized training.
Client Sampling. In a cross-device federated learning scenario, there are usually millions of devices in participa-
tion, which makes round-robin strategies impossible to work. The server has to sample some parties in each round
for faster convergence and the accuracy should be compromised. The client sampling trick usually does not work
alone. In some earliest works of FL such as Federated Optimization [26] and FedAvg [5], random sampling over
multiple parties is used during the training process. Afterwards, it is applied by other works on cross-device FL
by default. Most of them still use the simplest uniformly random sampling method. Some consider choosing the
clients conditionally. For example, FedCS [27] actively manages the clients based on their resource conditions.
Reinforcement learning techniques have also been applied to adaptively sample more suitable clients [28].
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Local Updating. The local updating techniques are first proposed to improve the communication efficiency in
distributed learning and they can also work well in FL. Some approaches use primal-dual methods to decompose
a global objective into many subproblems that can be solved in parallel. Therefore the communication rounds can
be effectively reduced. However, in FL some trivial ideas have shown good empirical performance. The most
commonly used algorithm FedAvg [5] is based on local SGD and global averaging. An extension [29] uses more
adaptive local updating methods like ADAGRAD, ADAM and YOGI.
Decentralized Training. Decentralized learning algorithms can effectively reduce the communication overhead
on the server side by apportioning them to each client. Many existing works on decentralized learning can also be
applied in FL, such as decentralized training algorithms of linear classifiers [30] and deep neural networks [31].
Some other works are based on special network structures. In [32], it considers the problem that the distributed
nodes can only communicate to their neighbors on a fixed communication graph in machine learning and devises
a gossip algorithm for average consensus with convergence guarantees. In [33], a dynamic peer-to-peer network
environment is considered and a novel decentralized FL framework BrainTorrent is proposed.

4.2 Interactive Data Compression

Another way to reduce communication cost is to compress the data in transmission directly. Many existing FL
works follow the model compression approaches in machine learning, such as sparsificaion and quantization.
Some others apply data structures like sketch to re-encode the gradients.
Compression with Sparsificaion and Quantization. One of the pioneering works in FL [4] focuses on improv-
ing the communication efficiency by random mask structures as well as a combination of quantization, random
rotations, and subsampling to compress the model parameters. The distributed mean estimation problem is
studied in [34] and an communication-efficient compressing algorithm using constant number of bits is devised.
In [35], it proposes Deep Gradient Compression (DGC) in cross-device distributed learning setting which can
greatly reduce the communication bandwidth by 99%. Two different strategies named extrapolation compression
and difference compression are proposed in [36], combined with a decentralized training algorithm. A special
quantization-based technique for gradient compression in FL is proposed in [37], combined with a periodic
averaging learning algorithm.
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Compression with Sketch. A probabilistic data structure for compressing big streaming data, the sketch [38],
is also used in gradient compression. To find heavy hitters (most frequent items) in the federated setting, a
sketch-based algorithm with local differential privacy is proposed in [39]. To compress sparse and nonuniform
gradient in distributed machine learning, MinMaxSketch is designed in [40], which uses a quantile sketch to sort
gradients into buckets. Another similar approach, the Sketched-SGD, is proposed in [41]. It is demonstrated to
have a 40x reduction in total communication cost with no loss in final model performance. In [42], the authors
prove that Count sketch without additional noise can satisfy the notion of differential privacy (DP) under specific
assumptions, which is also known as “privacy for free”.

5 Quality Control

The heterogeneity of workers in crowdsourcing results in the quality variation of aggregated results. The purpose
of quality control is to quantify the heterogeneous quality of workers and tasks and effectively aggregate results
to ensure high-quality task completion. Similarly, there is also the heterogeneity problem in FL participants,
especially in cross-device scenarios. Thus quality control is also important for FL. Different from quality control
techniques in crowdsourcing, which concentrate on evaluating the characteristics or skills of different workers to
improve crowdsourced results, quality control in FL mainly deals with two unique challenges, the heterogeneity
in data and the heterogeneity in resource.

5.1 Data Heterogeneity

The data heterogeneity mainly refers to the non-IID data problem in FL. In [43], a taxonomy of non-iid data
regimes is provided, including feature distribution skew, label distribution skew, etc. The most commonly adopted
FedAvg [5] algorithm only considers the IID case at first and no theoretical analysis on its convergence is made.
To improve the performance of FedAvg especially in non-IID settings, some approaches have been proposed
[44, 45, 46]. A more rigorous theoretical proof on the convergence of FedAvg with non-IID data is provided in
[47]. It establishes a convergence rate by the inverse of the number of iterations for strongly convex and smooth
problems. However, in [48], it demonstrates that the accuracy of FedAVG can be largely damaged on highly
skewed non-IID data where each device only has a single class of data. The solution is to create a globally shared
small subset of data. But if each device shares too much data, the privacy constraints might be broken, which
is contradictory to the initial purpose of FL. To avoid data sharing, in [49], it proposes federated augmentation,
where each participant will collectively train a generative model. Therefore, the local data can be augmented by
the generative model and gets rid of the non-IIDness. The differences between each client’s data distribution can
also be taken as black boxes. A reinforcement learning-based client selection approach is proposed in [28] to deal
with the non-IID data.

5.2 Resource Heterogeneity

The computation resources of different devices are commonly heterogeneous in mobile edge computing. The
main objective is to optimize the model quality by resource allocation. The problems of resource heterogeneity
such as uncertainty of wireless channels and devices with heterogeneous power constraints have been emphasized
in [50]. It formalizes FL with heterogeneous resources as an optimization problem to capture the trade-offs
between efficiency and accuracy. Then it solves the non-convex problem by decomposing it into several convex
sub-problems. Control algorithms have also been proposed to realize more effective resource allocation. An
adaptive control algorithm for FL with distributed SGD is proposed in [51]. It studies the convergence bound of
the learning problem with the resource consumption constraints. A protocol named FedCS is proposed in [27]
which performs client selection in each round according to their different resource conditions. Devices with poor
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computation power or low communication bandwidth will be eliminated during training. A more comprehensive
survey on FL in mobile edge networks can be found in [52].

6 Future Directions

In this section, we will envision some future directions in federated learning.
Task Assignment. Until now, no work has considered the task assignment problem in FL. In most cases there
is only one learning task. Meanwhile a single learning task cannot be decomposed like in crowdsourcing [53].
However, on a federated learning platform where task requesters and data providers can join and leave freely, task
assignment can still be meaningful. This makes the platform similar to a data market [22]. But it still has unique
challenges of FL, such as data privacy concerns, and the resource budgets of the data providers.
Acceleration of Encryption Schemes. The encryption schemes for privacy protection in FL such as homomor-
phic encryption and secret sharing often brings extremely large computation cost. For example, training a simple
MLP on the MNIST dataset with homomorphic encryption can take 10 times slower than the original algorithm
without any privacy protection [9]. The time consumption will be intolerable with larger dataset and deeper
models like CNN. Therefore, how to accelerate the encryption schemes in FL has become a crucial problem.
Personalization. Most of existing works focus on training a global model rather than a personalized one for each
client. With the help of multi-task learning, the participants can have personalized results by learning separate but
related models [44]. However, it can only work with a small number of participants. In a large-scale cross-device
scenario, novel domain adaptation techniques need to be designed to realize the full personalization.
Fairness. Some existing works already consider the fairness problem in FL [54, 55]. However, the problem
is still challenging especially in scenarios with millions of mobile devices. Moreover, differential privacy is
commonly used as a privacy preserving technique in FL but it may result in unfairness in model training [56].
How to compromise the strict constraints while still preserving the fairness in FL remains an open question.
General FL Platform. Like a crowdsourcing platform, a general FL platform can bring more opportunities to
both data providers and task requesters. However, designing such a platform is challenging. The aforementioned
key components should all be considered. The platform should support different types of learning algorithms and
privacy preserving schemes in different scenarios. Also, it should provide incentive and pricing mechanisms for
the participators. The communication cost and the model quality should also be optimized. Existing FL systems
and benchmarks [57] only implement part of these features and cannot work as a general FL platform.

7 Conclusion

Federated Learning has gained much attention in recent years as a promising solution to the data isolation problem
in artificial intelligence. Both as human-empowered AI techniques, federated learning and crowdsourcing have
many similarities. In this article, we discuss four core issues in federated learning from the perspective of
crowdsourcing, namely privacy and security, mechanism design, communication optimization and quality control.
We find that the design of federated learning systems can be inspired by existing techniques in crowdsourcing
platforms. We also envision some future directions of federated learning, which would be helpful to build a fully
fledged federated learning platform.
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