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Abstract. Trajectory data underpins many data-driven spatiotemporal
applications, such as navigation or ride-hailing. However, privacy concerns
hinder the collection and utilization of high-quality, large-scale trajectory
data. Local Differential Privacy (LDP), injecting noise to trajectories for
perturbation, has been proposed to protect its privacy. Yet, existing LDP-
based mechanisms overlook widely adopted denoising pre-processings
of trajectories (e.g., filtering, outlier detection and trajectory similarity
measure), rendering noise injection in the whole domain unnecessary
and incurring low utility and poor efficiency in practice. In this paper,
we observe that various denoising pre-processings all lead to bringing
thresholds to perturbation domain, which indicates the noise injected
by LDP mechanisms may be useless. This provides an opportunity for
enhancing utility of LDP mechanism by eliminating unnecessary noise
injection. We propose t-LDP, a novel LDP-based mechanism for trajec-
tory publishing. It integrates threshold into noise injection, eliminating
redundant noise that could be denoised by trajectory pre-processing.
Additionally, we devise an automaton-based algorithm for efficient pertur-
bation. Experiments on real datasets demonstrate the effectiveness and
efficiency of our approach. Especially in extensive perturbation domains,
our method shows a 20% improvement of utility and a 600-fold increase
in speed compared to existing methods while maintaining robust privacy
protection.

Keywords: Local differential privacy · Trajectory publishing · Privacy
preservation.

1 Introduction
Trajectory data has largely promoted the development of spatiotemporal

applications. Modern spatiotemporal applications tend to devise data-driven
approaches for smarter services, such as transportation recommendation [21,22],
ride-hailing [29,26,25] and route planning [27]. Despite its significant benefits,
gathering and using trajectory data raises serious privacy concerns. The leakage
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of trajectory data will incur exposure of sensitive or personal information, risking
individual privacy and potentially threatening national security [15].

To overcome this, Differential privacy(DP) has been proposed and become
the de facto standard for publishing sensitive data with provable guarantees of
individual privacy. Local differential privacy (LDP), one important variant of
(centralized) DP, provides stronger protection by removing the need for trusted
data collectors. These DP/LDP methods achieve indistinguishability among
different users’ trajectories via injecting noise into the original trajectory for
perturbation. Although LDP offers practical privacy solutions for trajectory
publishing, its mechanism often suffers lower utility and poor scalability due to
its strong privacy requirements and large perturbation domain where the raw
input is obfuscated. This issue primarily arises from the exponential growth of
the perturbation domain in spatiotemporal data contexts [9,31].

However, existing privacy mechanisms all overlook the fact that denoising
pre-processings are widely adopted when utilizing trajectories. Typically, these
pre-processings aim to reduce noise or detect outliers, making the noise injection
across the entire domain unnecessary. Over-injected noise, often treated as
pure noise, is either ignored or smoothed out, contributing nothing to privacy
preservation. This observation provides us an opportunity to reduce the noise
injection for enhancing data utility. Motivated by this observation, we review
several commonly-used denoising pre-processings of trajectory such as filtering,
outlier detection, and anti-noise trajectory similarity measures. We observe
that these denoising methods introduce thresholds to the perturbation domain,
resulting in noise injections beyond these thresholds being considered as pure
noise and subsequently disregarded. Based on this observation, we propose a
threshold-integrated local differential privacy mechanism (t-LDP), which enhances
trajectory utilization by perturbing the trajectory within the threshold, aligning
with denoising pre-processings, thus minimizing redundant noise injection.

To better accommodate the mechanism for large-scale applications, we propose
an automaton-based data structure to streamline the sampling process. Based
on it, we devise an efficient two-step perturbation algorithm to sample the
sanitized trajectory, taking the sampling process as the running of the automaton.
Initially, it confines perturbations to a symmetric subdomain by determining
the perturbation distance through sampling, narrowing the scope of potentially
sanitized trajectories. Subsequently, it employs the automaton, which efficiently
encodes the sampling states, to select a sanitized trajectory within the subdomain.
We further extend this algorithm to include reachability constraints, catering to
scenarios requiring more realistic trajectories.

Experiments on real-world datasets validate the effectiveness and scalability
of our approach. Our approach produces perturbed trajectory data that have
high utility in much less time. It notably boosts data utility by 20% and achieves
a 600-fold increase in processing speed within large perturbation domains, all
while maintaining the same level of privacy protection as the existing method.

The contributions of this paper can be summarized as below:
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– We propose threshold-integrated LDP mechanism (t-LDP), a variant of
LDP, which integrates threshold-constraints into perturbations, eliminating
redundant noise that could be denoised by trajectory pre-processing;

– We devise an efficient two-step automaton-based algorithm for perturbing
spatiotemporal trajectory under the guarantee of t-LDP, accommodating
reachability constraints for realistic trajectory publishing, and addressing
computational challenges in local settings. Furthermore, we provide theoretical
proof of the utility bound for our solution.

– Extensive experiments conducted on real-world datasets demonstrate the
effectiveness and scalability of our approach.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 details our observations on LDP application in trajectory data and in
Section 4 we elaborate our t-LDP and problem statement. Section 5 elaborates on
the proposed automaton-based mechanisms. Experimental results are discussed
in Section 6, and the paper concludes in Section 7.

2 Related Work
Centralized DP [12] and its variant LDP [11] have become the de facto privacy

standards and have been widely used for spatiotemporal data publishing. Due
to its assumption-free approach regarding attackers’ background knowledge and
the provision of stringent privacy guarantees, centralized DP has been widely
used in many privacy-preserving spatiotemporal data publishing tasks, such
as range counting [13] and density-based query [18]. However, centralized DP
relies on trusted data aggregators to collect the raw data from users, which
can be unrealistic for real-world scenarios. To avoid this limitation, LDP was
proposed, enabling data owners to perturb their data locally. LDP now is widely
adopted in spatiotemporal data publishing like distribution queries [7] and
frequency estimation [8]. However, most of the LDP mechanisms assume a
uniform perturbation probability and privacy-preserving level across the domain,
which can lead to low utility, especially for spatiotemporal data.

To better accommodate the property of spatiotemporal data, a number of
relaxations of (L)DP have been proposed to allow non-uniform perturbation
across the domain. For example, the dχ-privacy [4], and its location-specific
adaption geo-indistinguishability [2], are widely adopted. These mechanisms
guarantee the indistinguishability level between any two inputs is proportional
to their distance. In trajectory privacy, aggregated domain perturbation with a
trusted collector, such as transition probability [6] and length distribution [16],
has been popular, aiming to approximate trajectory domain perturbation with
lower-dimensional aggregated data. Though attempts made, its innate fitness for
aggregation remains the bottleneck for direct data publishing.

Recently, a trend towards direct privacy-preserving trajectory publishing in
local settings has emerged. This shift presents significant challenges due to the
vastness of the domain and the complexity involved in adding noise effectively
with a limited privacy budget. The leading discussion was proposed by Cunning-
ham et al. [9]. They propose an n-gram-based methodology leveraging external
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knowledge to ensure the trajectory level indistinguishability. Further advancing
this field, Zhang et al. [31] integrate directional information between points and
sample restricted perturbation domain of trajectory within the perturbation
process to ensure privacy while preserving utility.

However, these methods suffer bad performances when trajectories cover a
wider range. This issue stems from their outputs being excessively perturbed
with noise. Although intended for privacy preservation, such excessive noise has
minimal impact on actual privacy protection, as denoising pre-processings like
outlier detection tend to ignore these perturbations. In this paper, we introduce
threshold to LDP mechanism to eliminate the drawbacks of existing methods.

3 Motivation
In this section, we introduce our motivation for our new LDP mechanism. We

observe that commonly-used trajectory pre-processings will eliminate excessive
noise, which can be equivalently viewed as bringing a threshold in perturbation do-
main. Below we reviewed three kinds of commonly used denoising pre-processings:
filtering, outlier detection, and anti-noise trajectory similarity measure, and
discuss how these pre-processings will influence the perturbation of LDP.

Filtering. Filtering (e.g., Kalman Filter [1] and Particle Filter [17]) is a
critical process used to smooth trajectory data. it helps maintain trajectory’s
overall structure and refine the trajectory by removing random fluctuations or
anomalies introduced by noise. Once the points are perturbed beyond a certain
threshold, filtering techniques would place significantly less belief on the points,
leading to their smoothing out and consequently failing to adequately reveal the
original trajectory information.

Outlier Detection. Outlier detection aims to identify points that substan-
tially deviate from an expected route or pattern. Prevalent methods adopt either
distance-based [19,20] or density-based manners [3] to identify whether a point
is an outlier. In other words, only when a point’s distance to others or local
density within a given threshold will it contribute to the final trajectory utility.
Perturbing points beyond these thresholds is unnecessary, similar to filtering.

Anti-noise Trajectory Similarity Measure. Trajectory similarity mea-
sures are normally adopted to measure the spatiotemporal similarity of tra-
jectories. Techniques like Longest Common Subsequence (LCSS) [28] and Edit
Distance on Real Sequences (EDR) [5] are particularly effective in this regard,
as they are designed to be noise-robust. Once again, their noise-robust prop-
erty is achieved by incorporating distance threshold when measuring similarity.
Therefore, the excessive perturbed points will be regarded as noise.

These various pre-processings applied to different aspects of trajectory data
share a common underlying principle: the use of a threshold to determine whether
a point sufficiently reveals the spatiotemporal characteristics of the original
trajectory. This approach effectively renders any excessive perturbation as mere
noise, contributing nothing to the data utility. Based on this observation, we
devise a threshold-integrated LDP mechanism by limiting the noise injections, as
we discuss in the next section.
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4 Problem Statement
In this section, we introduce our threshold-integrated LDP privacy mechanism

and problem statement.
For a given spatiotemporal domain, we use Sst to denote the spatiotemporal

points in this domain. Hence, we define a trajectory in this domain, τ , as a
sequence of spatiotemporal points that τ = {s1..., s|τ |} = {(p1, t1)..., (p|τ |, t|τ |)},
where |τ | denotes the length of the trajectory and each si ∈ Sst.

We define the spatiotemporal correlated δ-trajectory set of τ , denoted as
∆Tτ (δ), and formulate the concept of local differential privacy within the δ-
trajectory set. Our central premise is to ensure that the sanitized trajectory
denoted as z does not facilitate an adversary in obtaining an undue amount of
sensitive information from the δ-trajectory set.

Essentially, the δ-trajectory set represents a group of trajectories spatiotem-
porally related to the original one, effectively obfuscating it.

Definition 1 (δ-Trajectory Set). Let τ = {s1, s2..., ..., sn} be the trajectory
subject to obfuscation. δ-trajectory set, denoted by ∆Tτ (δ), is a set containing
all trajectories τ ′ = {s′1, s′2, ..., ..., s′n} of length n, where each point s′i is at most
distance δ from the corresponding point si in τ .

∆Tτ (δ) = {τ ′|∀i ∈ {1, ..., n}, d(si, s′i) ≤ δ}

When δ is set to domain’s diameter, the δ-trajectory set includes trajectories
spanning the full spatiotemporal domain, aligning with the standard LDP model.

Definition 2 (Threshold-integrated Local Differential Privacy, t-LDP).
Given any trajectory τ , threshold δ, a randomized mechanism, A, adheres

to ϵ threshold-integrated local differential privacy on δ-trajectory set ∆Tτ (δ), if
for any output trajectory z that belongs to ∆Tτ (d2), and any pair of trajectories
τ1 and τ2 within ∆Tτ (d1) such that d1 + d2 = δ, the output from mechanism A
satisfies the inequality

Pr[A(τ1) = z]

Pr[A(τ2) = z]
≤ exp(ϵ) (1)

This definition employs a graded privacy protection approach based on the
proximity of output trajectories to the input. Outputs closer to the input trajec-
tory are afforded stronger privacy safeguards, with a variety of trajectories in
∆Tτ (δ) producing z. The output probability similarity remains within exp(ϵ) dif-
ference. Conversely, maintaining the same privacy level for more distant outputs
may not be advantageous, as it could reduce data utility without significantly
improving privacy. This method aims for a balanced privacy-utility trade-off,
considering the spatiotemporal nature of trajectory data.

According to [24], threshold-integrated local differential privacy is able to pro-
tect privacy by limiting the information gained in δ-trajectory set for adversaries
with specific prior knowledge.
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Theorem 1 (Adversarial Privacy[24]). For trajectory s ∈ ∆Tτ (d1), output
z ∈ ∆Tτ (d2) such that d1 + d2 = δ and adversaries knowing the true trajectory
is s ∈ ∆Tτ (d1), it holds that: Pr(x = s|z)/Pr(x = s) ≤ exp(ϵ), where Pr(∗) and
Pr(∗|z) are the prior and posterior probabilities of adversaries.

Problem Statement. A trajectory is defined as a sequence of spatiotemporal
points. Each individual has a sensitive trajectory τ = {s1..., s|τ |}. To preserve
privacy and minimize redundant noise, each user locally perturbs their trajectory
into τ̂ = {ŝ1..., ŝ|τ |} within a δ-trajectory set, conforming to t-LDP. This pertur-
bation ensures that adversaries cannot accurately deduce any specific point in
the trajectory. After receiving these perturbed trajectories, various trajectory
data analyses, like range queries, can be conducted. The objective is to retain
maximal trajectory information, ensure an efficient and scalable perturbation
process, and comply with the t-LDP privacy standard.

5 Our Trajectory Publishing Algorithm
The new privacy mechanism necessitates new LDP perturbation algorithms.

This section introduces the exponential mechanism for t-LDP (Sec. 5.1), then
details an efficient version of the perturbation mechanism based on automaton
(Sec. 5.2), and extends it for producing more realistic trajectories (Sec. 5.3).

5.1 Exponential Mechanism for t-LDP

We adapt the exponential mechanism [14], a key perturbation method for
LDP, to underpin our privacy mechanism. The exponential mechanism’s output
depends on a utility function u(·, ·) and sensitivity ∆u. The utility function
evaluates the spatiotemporal correlation between perturbed and the original
trajectory, while sensitivity confines the variability in utility scores.

Mechanism 1. Exponential Mechanism for t-LDP. Given the spatiotem-
poral domain Rst, for an n-length trajectory τ ∈ Rn

st, the exponential mechanism
Ae outputs τ ′ ∈ ∆Tτ (δ) with probability

Pr(τ ′) =
exp( ϵu(τ

′,τ)
∆u )∑

τ ′′∈∆Tτ (δ)
exp( ϵu(τ

′′,τ)
∆u )

(2)

Lemma 1. For any input trajectory τ , mechanism 1 satisfies ϵ t-LDP with
respect to δ-trajectory set of τ .

Proof. Let Ae denotes exponential mechanism for t-LDP on δ-trajectory set,
τ be any trajectory to be perturbed, τ1, τ2 ∈ ∆Tτ (d1) and z ∈ ∆Tτ (d2) that
d1 + d2 = δ. We get

Pr[Ae(τ1) = z]

Pr[Ae(τ2) = z]
=

exp( ϵu(z,τ1)∆u )∑
τ∈∆Tτ1

(δ) exp(
ϵu(τ,τ1)

∆u )
/

exp( ϵu(z,τ2)∆u )∑
τ∈∆Tτ2

(δ) exp(
ϵu(τ,τ2)

∆u )

= exp(ϵ
u(z, τ1)− u(z, τ2)

∆u
) ≤ exp(ϵ)

(3)
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The second step derives from the fact that each trajectory in ∆Tτ1(δ) corre-
sponds uniquely to a trajectory in ∆Tτ2(δ) with an identical relative location to
τ2, thus sharing the utility, and vice versa. Given that these paired trajectories
possess equivalent probabilities, their aggregated probabilities remain consistent.

In this paper, we use Manhattan distance as the distance measure, suitable for
grid-based city layouts, i.e., for two trajectories τ1 = {s1, ..., sn}, τ2 = {s′1, ..., s′n},
the distance is d(τ1, τ2) =

∑n
i=1 d(ri, r

′
i), where ri, r

′
i correspond to the region

where si, s
′
i in. The utility function u measuring the utility of the private

output τ ′ ∈ Rn
st and the sensitivity ∆u of utility function on δ-trajectory set

are: u(τ ′, τ) = −d(τ ′, τ), ∆u = max
τ∈Rn

st

max
τ1,τ2∈∆Tτ (δ)

|u(τ1, τ)− u(τ2, τ)| ≤ nδ

However, Direct implementation of the exponential mechanism on ∆Tτ (δ) is
impractical due to the computation cost reaching O(|τ |δ3|τ |). Thus, an efficient
mechanism is required for practical implementation.

5.2 Efficient Automaton-based Algorithm

To efficiently perturb the trajectory while conforming to t-LDP, we propose
an automaton-based data structure and introduce a two-step automaton-based
algorithm, using the automaton to streamline the perturbation process.

Automaton-based Data Structure. To develop an efficient mechanism,
we propose the automaton-based data structure, called Manhattan Distance
Nondeterministic Finite State Automaton(MHNFA), which identifies all the
trajectories that have a specific Manhattan distance to an input trajectory and
encodes the random states to sample one of them.

Definition 3 (Manhattan Distance NFA). For spatiotemporal domain Rst,
a length n ∈ N+, a trajectory τ ∈ Rn

st, a perturbation region threshold δ and
a distance ℓ ∈ N, the Manhattan Distance NFA is an automaton Mτ,ℓ =
(Qτ,ℓ, ∆Rτ (δ), tr, q

0, Fn,ℓ) where: (1)Qτ,ℓ is the set of states. (2)∆Rτ (δ) is the
input alphabet representing the regions within δ distance from the regions occupied
by τ . (3)tr : Qτ,ℓ × ∆Rτ (δ) → Qτ,ℓ is the transition function between states.
(4)q0 ∈ Qτ,ℓ is the initial state. (5)Fn,ℓ is the set of accepting states.

Besides, we use policy µ(·, ·|qi): Qτ,ℓ×∆Rτ (δ)→ [0, 1] denoting the probability
function of transferring between states. It holds that

∑
qi+1,σi+1

µ(qi+1, σi+1|qi) =
1, where µ(qi+1, σi+1|qi) represents the probability of transitioning from state qi
to state qi+1 given input symbol σi+1.

Based on the above data structure, we propose a two-step framework, and
the overall procedure is outlined in Algorithm 2:

Main Idea of our Automaton-based algorithm (Mechanism 2). (1)Dis-
tance Sampling : We sample a distance ℓ for input trajectory τ to confine the
perturbation domain, narrowing the scope of potential trajectories. (2)Trajectory
Selection: By leveraging an automaton that effectively encodes the sampling
states, we swiftly sample a sanitized trajectory within this limited subdomain.
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Fig. 1. Illustration of Algorithm 1 via Mτ,2, sampling trajectories 2 units from τ .
States q ∈ Qτ,ℓ are circles, transitions are arrows, and the double-circled state is the
accepting state. The value V (qi) at any state qi is in blue, and transition probability
µ(qi+1, σ|qi) is in red. Sampling begins at q0,0, leading to the perturbed trajectory
{σ1, σ2, σ3} at the accepting state.

Distance Sampling. According to mechanism 1, all the trajectories that share
the same distance from the input n-length trajectory τ have the same probability
of being chosen. Thus, the chance to select the subdomain with distance ℓ to τ is

Pr(ℓ; τ, δ) =
count(ℓ) exp(− ϵℓ

nδ )∑nδ
i=0 count(i) exp(−

ϵi
nδ )

(4)

where count(ℓ) is the number of trajectories that are ℓ away from τ .
Generating function, a key combinatorial tool, is used to calculate aggregate

count(∗). The generating function G(x) denotes the composition of possible
regions which are represented by g(x) for each step,and c(i) stands for the
number of regions with distance i from one region:

G(x) = g(x)n = (c(0)x0 + ...+ c(δ)xδ)n = (1 +
∑

δ≥d≥1

(4d2 + 2)xd)n (5)

where the coefficient of xi is the number of trajectories at distance i away from τ .

Trajectory Selection. The MHNFA efficiently encodes the sampling states
and samples evenly in the trajectory subdomain with the determined distance
selected in the previous step by taking the symbol list between the transition
of states. States qi,j ∈ Qτ,ℓ represent the scenario where i regions of the output
trajectory, with a cumulative distance j from τ , are determined. Each state
qi,j can transition to qi+1,j+k, with k being the distance to the corresponding
region in τ and represented by symbol σi+1,k ∈ ∆Rst. The transition function is
tr(qi,j , σi+1,k) = qi+1,j+k. The automaton starts at q0 = q0,0 and accepts at qn,ℓ.

Given a distance ℓ and a trajectory τ , we construct an MHNFA Mτ,ℓ by
Algorithm 1. It takes inputs τ and {qn,ℓ}, maintaining a function V : Qτ,ℓ → N

for the count of unique paths to qn,ℓ, and outputs the transition policy µ. The
probability of selecting a region σ at state qi,di

is equal to V (qi+1,di+1
) ∗ c(di+1−

di)/V (qi,di
). The algorithm iterates backward from the end state to q0 for
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Algorithm 1: Manhattan Distance NFA Construction
Input: n-length input trajectory τ = {r1, r2, ..., rn}, accepting set {qn,ℓ}
Output: policy µ

1 n, i← |τ |, 1
2 V (qn,ℓ)← 1
3 CurrQueue,ActiveQueue← {qn,ℓ}, {}
4 while i ≤ n do

// q′′, q′, q correspond to qi+1,d′′
i+1

, qi+1,d′
i+1

, qi,di

5 for q′ ∈ CurrQueue do
6 for (q, σ) s.t. q′ ∈ tr(q, σ) do
7 V (q)←

∑
{q′′|∃σ′,q′′∈tr(q,σ′)} V (q′′) ∗ c(d′′i+1 − di)

8 µ(q′, σ|q)← V (q′)∗c(d′
i+1−di)

V (q)

9 ActiveQueue← ActiveQueue+ {q}

10 CurrQueue← ActiveQueue
11 ActiveQueue← {}
12 i← i+ 1

13 return µ

Algorithm 2: Automaton-based Perturbation Algorithm
Input: n-length input trajectory τ = {r1, r2, ..., rn}, threshold δ
Output: n-length output trajectory τ̂

1 {count(0), count(1), ..., count(nδ)} ← Coefficients of G(x) from Eq.(5)
2 ℓ← Sample distance from distribution in Eq.(4)
3 µ← Manhattan Distance NFA Construction with parameters τ ,qn,ℓ
4 {σ1, ..., σn} ← Sample the trajectory in the NFA with policy µ
5 return {σ1, ..., σn}

constructing transition policy µ, and progresses forward to select one trajectory
based on µ. Fig. 1 shows an example MHNFA.

After the region-level trajectory is sampled, the point-level trajectory is
constructed with uniform sampling in the corresponding regions.

Privacy Analysis. Here, we prove that the algorithm provides the same level
of t-LDP to input trajectory τ as mechanism 1.

Lemma 2. Given threshold δ, privacy budget ϵ, and n-length input trajectory
τ ∈ Rn

st, mechanism 2 provides ϵ t-LDP to τ w.r.t δ-trajectory set.

Proof. For Mechanism 2 Aea, the probability of sampling trajectory z is equal
to the probability in Mechanism 1.

Pr[Aea(τ) = z] =
count(d(z, τ)) exp(− ϵd(z,τ)

nδ )

count(d(z, τ))
∑nδ

i=0 count(i) exp(−
ϵi
nδ )

= Pr[Ae(τ) = z] (6)
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Time Complexity Analysis. Using mechanism 2 and a distance selected as
per Eq.(4), the time complexity for generating a private output within threshold
δ is O(|τ |δ). This is a marked improvement over the direct implementation of
the exponential mechanism 1, thanks to two main factors: (1) initial distance
sampling that reduces the sampling domain, and (2) domain symmetry utilization
that minimizes automaton states, speeding up the generation process.

Utility Analysis. Analyzing the accuracy of perturbed trajectories is crucial
for calibrating privacy, aiming to balance privacy strength against induced errors.
We compute the expectation and variance of the distance between input and
output trajectories as functions of ϵ and δ. Letting x = e

−ϵ
|τ|δ , the expectation

and variance are defined as:

E(ℓ) =

∑
|τ |δ≥d≥0 d · count(d)xd∑
|τ |δ≥d≥0 count(d)x

d
=
|τ |

∑
|δ≥d≥1(4d

2 + 2)dxd

1 +
∑

δ≥d≥1(4d
2 + 2)xd

(7)

var(ℓ) =

∑
|τ |δ≥d≥0 d

2 · count(d)xd∑
|τ |δ≥d≥0 count(d)x

d
− E(ℓ)2 (8)

In the limit as ϵ → ∞ and x → 0, both E(ℓ) and V ar(ℓ) approaches zero,
indicating that when privacy diminishes, the mechanism outputs the input
trajectory unchanged.

5.3 Efficient Automaton-based Algorithm with Reachability
Constraint

Imposing reachability constraints is essential for ensuring the realism of
perturbed trajectories adhering to spatiotemporal constraints, thereby enhancing
practical utility.

Definition 4 (Reachability). For a threshold θ, representing maximum travel
distance over time, and spatial distance ds(·, ·), a region ra is reachable from rb
at time t if ds(ra, rb) ≤ θ(t).

For a trajectory τ = {s1, s2, ..., sn} in the spatiotemporal domain, where
si = (pi, ti), reachability demands that each pi+1 be reachable from pi at ti
for 1 ≤ i < n. The trajectories in δ-trajectory set conforming to reachability
constraint constitute ∆Tτ,θ(δ).

Implementing reachability across complete trajectories, as described in [9],
entails traversing an exponentially growing trajectory domain. This complexity
can be mitigated by limiting traversal to an n-gram domain, thus partitioning the
problem to lower time complexity. Nevertheless, such an approximation might
not accurately capture the actual reachability-constrained domain and can suffer
from scalability issues owing to its sampling and post-processing methods.

Automaton-based Data Structure with Reachability Constraint. To
accommodate our algorithm to the scenario where reachability constraint is
required, we introduce our revised automaton-based data structure, Reachabil-
ity Constrained MHNFA (RC-MHNFA), designed for scalable sampling within
trajectory domain ∆Tτ,θ(δ) under reachability constraints θ.
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Definition 5 (Reachability Constrained MHNFA). Consider a spatiotem-
poral domain Rst. The reachability constraint is defined by a matrix Pθ, where
Pi,j = P[rj |ri] = 1 if region rj is reachable from region ri, and Pi,j = 0 otherwise.

Let Mτ,ℓ = (Qτ,ℓ, ∆Rτ (δ), tr, q
0, Fn,ℓ) be a MHNFA. The Reachability Con-

strained MHNFA, denoted Mτ,ℓ,θ, is defined as Mτ,ℓ,θ = (Qτ,ℓ,Rst
, ∆Rτ (δ), trθ,

q0Rst
, Fn,ℓ,θ), where:

Qτ,ℓ,Rst
= Qτ,ℓ ×Rst, trθ : Qτ,ℓ ×Rst ×∆Rτ (δ)→ Qτ,ℓ,Rst

,

q0Rst
= (q0, r0), Fn,ℓ,θ = {(qf , r) ∈ Qτ,ℓ,Rst

|qf ∈ Fn,ℓ, r ∈ Rst}
For any (q′, r′) ∈ trθ(q, r, σ), we have tr(q, σ) = q′ and P[r′|r] = 1. A

state (q, r) ∈ Qτ,ℓ,Rst
can transfer to another state by a policy µθ(·, ·|q, r) :

Qτ,ℓ ×∆Rτ (δ)→ [0, 1].

TheMτ,ℓ,θ is the synchronous product ofMτ,ℓ and the reachability constraint
θ. The transition function trθ ofMτ,ℓ,θ has to satisfy both the transition function
tr and be a feasible transition under the reachability constraint. Thus the output
of the automaton is one of the trajectories in trajectory set ∆Tτ,θ(δ).
Main Idea of Automaton-based Algorithm with Reachability Constraint
(Mechanism 3). (1)Dynamic Programming based-Distance Sampling : We sample
a distance ℓ for input τ with dynamic programming, restricting the range of
possible trajectories within ∆Tτ,θ(δ); (2)Trajectory Selection: By leveraging
an automaton that effectively encodes the sampling states under reachability
constraint, we swiftly sample a sanitized trajectory within the limited subdomain.

Dynamic Programming based-Distance Sampling. In ∆Tτ,θ, trajectories
equidistant from input τ are equally likely (Mechanism 1). The probability of
choosing distance ℓ is:

Prθ(ℓ; τ, δ) =
countθ(ℓ) exp(− ϵℓ

nδ )∑nδ
i=0 countθ(i) exp(−

ϵi
nδ )

(9)

where countθ(ℓ) counts trajectories ℓ away from τ in ∆Tτ,θ(δ).
However, calculating countθ(·)for the entire domain ∆Tτ,θ(δ) proves to be less

straightforward than in the trajectory domain ∆Tτ (δ) used in Mechanism 2, due
to the imposition of a reachability constraint. The symmetry of the trajectory
domain and independence of perturbing each point is no longer maintained, thus
an efficient method to calculate countθ(·) would be needed.

Here, we propose a method based on dynamic programming to efficiently calcu-
late the sampling distance under the reachability constraint for an n-length trajec-
tory represented as discrete regions τ = {rτ,1, ..., rτ,n} = {(rsτ,1, tτ,1)...(rsτ,n, tτ,n)}.

We define counti,r = counti,(rs,t)(ℓ) as the number of trajectories that start
at the states (qi,ℓ, r) = (qi,ℓ, (r

s, t)) and end at accepting states. Due to the fact
that counti,r(ℓ) can be calculated by all its succeeding reachable states, for each
succeeding state r′ in time region t′, we can formalize its transition function as

counti,r(ℓ) =
∑
t′

∑
P[r′|r]=1

counti+1,r′(ℓ− d(r, r′)) (10)
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Having calculated the count1,∗, the countθ for the whole trajectory domain
under reachability constraint θ is the sum of the count1,∗ for each corresponding
distance. The output trajectory distance from the input trajectory is selected
according to Eq.(9).

Trajectory Selection. The construction process of the automaton and trajec-
tory selection in Mechanism 2 parallels that of Mechanism 3. The transition func-
tion, considering reachability trθ, retains its previous form but integrates a reacha-
bility constraint, that is, trθ(qi,j , r, σ) = (qi+1,j+k, σ) ,∀ P[σ|r] = 1. Moreover, the
accepting states combine the accepting state in Mechanism 2 with the perturbed
regions of rn, expressed as {(qn,ℓ, r)|∀r ∈ ∆Rrn(δ)}. The construction iterates
backward from these accepting states to the initial state. Throughout this pro-
cess, the function V is updated as Vθ(q, r) =

∑
(q′′,r′′|trθ(q,r,r′′)=(q′′,r′′)) Vθ(q

′′, r′′),
effectively tracking the count of unique paths to each state. The transition policy
µθ(q

′, r′|q, r) is then determined as the ratio Vθ(q
′,r′)

Vθ(q,r)
, guiding the selection of the

next state and region in the trajectory.

6 Experimental Evaluation

6.1 Experimental Setup

Experimental Environment. The experiments were conducted on a server
equipped with an Intel Platinum 8361HC CPU and 32GB of RAM. The imple-
mentation was carried out using Python 3.8.

Datasets. Our experiments employ two real-world datasets: Porto [23] and
Tdrive [30]. Porto dataset1 comprises 53,442 taxi trajectories collected over 8
months in a 20 km square area of Porto, each lasting 30 minutes and sampled every
5 minutes, typically featuring shorter, faster movements. In contrast, Tdrive2

includes 10,878 longer taxi trajectories over a larger area, each with a duration
of 60 minutes and a 10-minute sampling interval.

Baseline. NGRAM [9], noted for its excellence in LDP trajectory publishing, is
well-suited for our spatiotemporal study needs and serves as our chosen baseline,
as also seen in [10,31]. Unlike other methods that perturb aggregated properties
and neglect the temporal aspect, thus struggling with direct trajectory-level
privacy, NGRAM effectively addresses both spatial and temporal dimensions
by perturbing each n-gram separately to form the overall trajectory. Here, we
adapt NGRAM to our LDP mechanism with the same reachability constraint as
t-LDP-RC to ensure the same level of privacy protection.

Due to the prohibitive computational complexity of the direct exponential
mechanism (refer to Mechanism 1), which is exponential and thus unfeasible
for experimentation, we opt to compare t-LDP (refer to Mechanism 2) and
t-LDP-RC (refer to Mechanism 3) alongside NGRAM in our analysis.

1 https://www.kaggle.com/datasets/crailtap/taxi-trajectory
2 https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-

sample/

https://www.kaggle.com/datasets/crailtap/taxi-trajectory
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
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Parameter Settings. In our experiments, we use the following default pa-
rameters, with a more comprehensive analysis of parameter effects in 6.2. The
reachability constraint is set to 10 m/s, representing taxi speed. As per [5,28],
we set the spatial threshold to a quarter of the maximum standard deviation
of trajectories and the temporal threshold to 20% of the trajectory’s total time.
spatiotemporal regions are formed by partitioning the spatial domain into gs× gs
grids (500m side lengths for both Porto and Tdrive) and dividing the temporal
domain into gt grids (3min for Porto, 2.5 min for Tdrive).

Utility Measures. Utility is evaluated using two metrics from prior studies [9,31]:
Mean Normalized Error (NE) and Preservation Range Query (PRQ). NE measures
the normalized distance between points in the output and original trajectories:
NE = 1

|T |
∑|T |

i=1
1

|τi|
∑|τi|

j=1 dχ(ŝj , sj) where |T | is the number of trajectories, and
dχ(·, ·) is the distance in dimension χ, normalized by the threshold distance.
PRQ assesses the proximity of points in the perturbed trajectory to those in the
original within range ρχ, with πχ(ŝj , sj , ρχ) indicating whether the distance is
within ρχ: PRQχ = 1

|T |
∑|T |

i=1
1

|τi|
∑|τi|

j=1 πχ(ŝj , sj , ρχ).

6.2 Experimental Results

Table 1. Comparison of utility performance. The subscript indices x, y, t, and s
represent the x-dimension, y-dimension, time dimension, and the combined spatial
dimension (x and y), respectively. The optimal result for each utility is highlighted in
bold. For both NE and AvPT, lower values indicate better performance, whereas for
PRQ, a higher value is preferable.

Porto Tdrive

ϵ = 0.1 ϵ = 1 ϵ = 5 ϵ = 10 ϵ = 0.1 ϵ = 1 ϵ = 5 ϵ = 10

NEx

NGRAM 0.2387 0.2375 0.2334 0.2289 0.2237 0.2233 0.2192 0.2157
t-LDP 0.2498 0.2475 0.2376 0.2200 0.2422 0.2399 0.2315 0.2174

t-LDP-RC 0.2211 0.2193 0.2108 0.1978 0.2097 0.2083 0.2011 0.1890

NEy

NGRAM 0.2383 0.2376 0.2348 0.2291 0.2244 0.2241 0.2206 0.2145
t-LDP 0.2495 0.2483 0.2373 0.2195 0.2438 0.2406 0.2300 0.2159

t-LDP-RC 0.2207 0.2192 0.2110 0.1970 0.2103 0.2086 0.2003 0.1889

NEt

NGRAM 0.2125 0.2113 0.2092 0.2056 0.2296 0.2281 0.2256 0.2231
t-LDP 0.2175 0.2161 0.2083 0.1972 0.2410 0.2415 0.2345 0.2228

t-LDP-RC 0.1840 0.1826 0.1761 0.1653 0.2181 0.2159 0.2097 0.2006

PRQs

NGRAM 0.4440 0.4472 0.4593 0.4779 0.6116 0.6136 0.6259 0.6428
t-LDP 0.3986 0.4046 0.4441 0.5116 0.5256 0.5349 0.5673 0.6165

t-LDP-RC 0.5108 0.5156 0.5477 0.5990 0.6214 0.6255 0.6527 0.6979

PRQt

NGRAM 0.7808 0.7836 0.7877 0.7957 0.8378 0.8420 0.8518 0.8568
t-LDP 0.7710 0.7749 0.7901 0.8137 0.8183 0.8170 0.8287 0.8460

t-LDP-RC 0.8371 0.8405 0.8524 0.8728 0.8380 0.8427 0.8544 0.8727

AvPT

NGRAM 0.0155 0.0157 0.0090 0.0090 0.1528 0.1538 0.1545 0.1208
t-LDP 0.0021 0.0022 0.0018 0.0010 0.0017 0.0017 0.0017 0.0014

t-LDP-RC 0.0031 0.0032 0.0026 0.0015 0.0256 0.0256 0.0248 0.0220
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(a) PRQ of Budget(Porto) (b) PRQ of Budget(Tdrive) (c) AvPT of Threshold(Porto)

(d) PRQ of Threshold(Porto) (e) AvPT of Length(Porto) (f) PRQ of Length(Porto)

Fig. 2. Preservation range query (PRQ) an Average perturbation time (AvPT) under
different privacy budget, threshold and trajectory length.

Evaluation of Utility and Efficiency. We set ρχ as half of the threshold in
the corresponding dimension. We assess the efficacy of our proposed mechanisms,
t-LDP and t-LDP-RC, alongside NGRAM across three metrics: Mean Normalized
Error (NE), Preservation Range Query (PRQ), and Average Perturbation Time
in seconds (AvPT) with various privacy budget ϵ, as shown in Table 1.

In utility comparison, t-LDP-RC consistently surpasses other mechanisms on
all datasets, showcasing its robust utility preservation. This superior performance
stems from t-LDP-RC sampling trajectories directly within the full reachability-
constrained domain, unlike NGRAM, which samples within segmented n-gram
domains under reachability constraint, and t-LDP, which does not apply a
reachability constraint. This approach not only conserves the privacy budget
by minimizing the need for repeated sampling but also solve the key issue
in NGRAM’s method, where sampling individual n-grams under reachability
constraints may not accurately reflect the constraints of the full trajectory.

Effects of Parameters. Here, we examine how utility and efficiency is influenced
by single mechanism or trajectory parameter with other parameters set to default.

Effects of Privacy Budget. The accuracy trends of preservation range queries
with increasing privacy budget ϵ are captured in Fig. 2(a) and Fig. 2(b). Both t-
LDP and t-LDP-RC display a notable improvement, with t-LDP-RC maintaining
superior performance. The enhancement in query accuracy is notable, achieving
up to 10% and 12% improvements over t-LDP and NGRAM in Porto, and
7% and 5% in Tdrive, respectively. In contrast, the utility growth in NGRAM
is slower due to the per n-gram privacy budget distribution.

Effects of Threshold. Fig. 2(c) and Fig. 2(d) demonstrate the effects of
an increasing threshold δ. A rise in the threshold corresponds to a broader
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perturbation domain and consequently introduces greater noise, leading to lower
perturbation efficiency. Automaton-based mechanisms, however, prove to be more
effective and scalable under these conditions. Both t-LDP and t-LDP-RC strike
a delicate balance between efficiency and utility, especially t-LDP-RC, which
achieves significantly 20% better utility preservation despite a marginal
increase in perturbation time when δ is high. On the other hand, NGRAM,
despite maintaining comparable utility to t-LDP, suffers from a perturbation
process that is over 600 times longer, limiting its practicality for extensive
perturbation domains.

Effects of Trajectory Length. The variation in error and perturbation time with
increasing trajectory lengths |τ | is shown in Fig. 2(e) and Fig. 2(f). t-LDP-RC’s
utility begins to align with NGRAM’s as trajectory length grows. The convergence
arises for the impact of reachability constraints diminishes over longer trajectories,
causing the per-point privacy budget in t-LDP-RC to approach that of NGRAM,
thus yielding similar utility profiles. However, t-LDP and t-LDP-RC still perform
efficiently and are scalable with longer trajectory length.

7 Conclusion
In this paper, we address the challenge of maintaining a balance between data

utility and privacy in the use of trajectory data, a critical concern in spatiotem-
poral applications. Based on the observation that the trajectory data utilization
often adopts denoising pre-processing, we devise a variant of Local Differential
Privacy that significantly reduces the need for excessive noise injection originally
required. Together with adaptable automaton-based mechanisms for efficient
trajectory sampling, our methods can achieve privacy, utility, and efficiency.
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