

Federated Latent Dirichlet Allocation: A Local Differential Privacy Based Framework

Yansheng Wang, Yongxin Tong, Dingyuan Shi

SKLSDE Lab, BDBC, School of Computer Science and Engineering and IRI, Beihang University, China {arthur_wang, yxtong, chnsdy}@buaa.edu.cn

Introduction

 Latent Dirichlet Allocation (LDA) is often used for text mining and has been a fundamental building block for many Internet

Theoretical Analysis

Assume frequency

services, but privacy leak in text data is a problem.

and deale states which	北京航空航天大桥
★ ★ ★ 9/17/2014	[2] 写信
n't understand how this place can stay in business. I ed over their menu and they don't have any decent sum! I'm sure the Italian food is awesome but come When I'm in the mood for shrimp dumpling, I need np dumpling! I just don't understand why they Idn't serve it to me. How hard is it to just roll a shrimp n your pizza dough and steam it? What happened to customer is always right?! I will never come here for sum again!	् २७ १९२६ १९२४ २३४४ २४४४ २४४४

g 回复全部 转发 移动到 × 标记为 × 更多 × 删除

 Federated learning (FL) can be a potential solution, but existing techniques can hardly be applied in LDA.

Comparison between privacy-preserving techniques

Methods	Computation cost	Communication cost	Threat model	Results
Homomorphic encryption	High	Very High	Semi-honest	Accurate
Secret sharing	High	High	Semi-honest	Accurate
Garbled Circuit	Very high	High	Semi-honest	Accurate
Local differential	Low	Low	Malicious	With noise

of words follow the 0.0 **Zipf's law** (a)

- Use the failure rate δ to control the remainders with low frequency (b)
- Theorem 1 (Privacy guarantee)
 - By setting $\eta = \frac{1}{\delta \delta_0 e^{\epsilon} + 1}$, the proposed mechanism

satisfies $(\epsilon, 2\delta)$ -LDP, where $\delta_0 = \delta - (\delta^{-\frac{1}{\gamma}} + 1)^{-\gamma}, \gamma \ge 1$ is a constant.

- Theorem 2 (Utility guarantee)
 - Given a fixed topic, the expected relative error of the model parameter ϕ_w after perturbation is bounded by $O(\eta k^2)$ where k is the rank of w by sorting ϕ_w in descending order.

FedLDA Overview

Data flow in global integration

System components

- Local sampling
 - Each user samples new topicword assignment from the global φ and the local θ and submits them to the server.
- Global integration
 - The server updates the global φ while θ is updated locally

Privacy components

- Design of updating vector
- Dense representation of updates.
 - Padding and sampling to reduce communication cost

Experimental Evaluation

Data flow in local sampling

Workflow of FedLDA

- Perturbing mechanism
 - With a probability η to perturb a topic-word assignment
 - The perturbation of a word will be another word sampled from the current LDA model
 - We use a trick to exclude rare words (shaded parts)

The probability that the perturbed word is the one in the rectangle is $0.6 \times 0.6 + 0.2 \times 0.1 = 0.38$

		LDA	FedLDA 7.5	FedLDA 5.0	
SF	Precision	0.868	0.781	0.736	
	Recall	0.708	0.767	0.760	ALIC loss is loss than
	F1 score	0.780	0.774	0.748	
	AUC score	0.798	0.771	0.738	- 3% compared with
SA Preci F1 se	Precision	0.777	0.774	0.761	non fodoratod modal
	Recall	0.814	0.776	0.766	non rederated model
	F1 score	0.795	0.775	0.764	
	AUC score	0.794	0.778	0.767	

Acknowledgment

We are grateful to anonymous reviewers for their constructive comments. This work is partially supported by the National Science Foundation of China (NSFC) under Grant No. 61822201 and U1811463. Yongxin Tong is the corresponding author of this paper.