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• Theorem 1 (Privacy guarantee)

• By setting 𝜂 =
1

𝛿𝛿0𝑒
𝜖+1

, the proposed mechanism 

satisfies 𝝐, 𝟐𝜹 -LDP, where 𝛿0 = 𝛿 − (𝛿
−
1

𝛾 + 1)−𝛾, 𝛾 ≥
1 is a constant.

• Theorem 2 (Utility guarantee)
• Given a fixed topic, the expected relative error of the 

model parameter 𝜙𝑤 after perturbation is bounded by 
𝑶(𝜼𝒌𝟐) where k is the rank of w by sorting 𝜙𝑤 in 
descending order.

Experimental Evaluation

Results of GS Results of MH 

AUC loss is less than 
3% compared with 

non federated model 

Varying Privacy budget, number of topics and sampling ratio

Our method

• Assume frequency 
of words follow the 
Zipf’s law (a)

• Use the failure rate 
𝛿 to control the 
remainders with 
low frequency (b)
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Experimental Settings
Data: Reviews and emails

# of users: 1K, 3K, 5K
# of topics: 20, 30, 50
Privacy budget: 5 ~ 8
Confidence: 0.5 ~ 1

FedLDA Overview 

• Latent Dirichlet Allocation (LDA) is often used for text mining 
and has been a fundamental building block for many Internet 
services, but privacy leak in text data is a problem.
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Threat model Results

Homomorphic
encryption

High Very High Semi-honest Accurate

Secret sharing High High Semi-honest Accurate

Garbled Circuit Very high High Semi-honest Accurate

Local differential 
privacy

Low Low Malicious With noise

• Comparison between privacy-preserving techniques 

• Federated learning (FL) can be a potential solution, but existing 
techniques can hardly be applied in LDA.

No privacy
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• Local sampling
• Each user samples new topic-

word assignment from the 
global 𝜑 and the local 𝜃 and 
submits them to the server.

• Global integration
• The server updates the global 

𝜑 while 𝜃 is updated locally

• Design of updating vector
• Dense representation of 

updates.
• Padding and sampling to 

reduce communication cost
• Perturbing mechanism
• With a probability 𝜂 to perturb 

a topic-word assignment
• The perturbation of a word 

will be another word sampled 
from the current LDA model

• We use a trick to exclude rare 
words (shaded parts)

System components

Privacy components

Workflow of FedLDA

The probability that the perturbed word is the one in the  
rectangle is 0.6×0.6+0.2×0.1 = 0.38


